Hydroformylierung

Erweiterte Suche

Hydroformylierung von Propen zu zwei isomeren Butanalen (aliphatische Aldehyde).

Die Hydroformylierung (auch: Oxosynthese, seltener Roelen-Synthese oder Roelen-Reaktion) ist eine technisch bedeutende, homogen katalysierte Reaktion von Olefinen mit Synthesegas zur Herstellung aliphatischer Aldehyde und gilt als eine der bedeutendsten Entwicklungen der industriellen Chemie des 20. Jahrhunderts. Als Hydroformylierungs-Katalysatoren verwendet die chemische Industrie metallorganische Cobalt- oder Rhodiumverbindungen. Das Verfahren wird bei Drücken von etwa 10 bar bis 100 bar und Temperaturen zwischen 40 und 200 °C durchgeführt.

Die primär entstehenden Aldehyde werden meist zu Alkoholen hydriert, die als Weichmacher für PVC, Tensidrohstoff für Wasch- und Reinigungsmittel und als Lösungsmittel dienen oder zu Polymeren weiterverarbeitet werden. Die Gesamtkapazität der Hydroformylierungsanlagen betrug 2002 rund 10,8 Millionen Tonnen pro Jahr.[1]

Durch den Einsatz neuer, aktiver Katalysatorsysteme mit Liganden, welche die Regio- und Stereoselektivität steuern, wurde die Hydroformylierung ein wichtiges Werkzeug in der organischen Synthese von Feinchemikalien.

Geschichte

Otto Roelen entdeckte die Hydroformylierung im Jahr 1938 beim Versuch, das bei der Fischer-Tropsch-Synthese (FT-Prozess) anfallende Ethen in den Prozess zurückzuführen.[2] Bei Versuchen, in denen neben Ethen auch Ammoniak dem FT-Prozess zugeführt wurde, fand Roelen Ablagerungen von Propionaldimin, einem Kondensationsprodukt aus Ammoniak und Propionaldehyd. Im Gegensatz zu anderen Forschern interpretierte er die Bildung von Propionaldehyd als eigenständige Reaktion, die er auf die Zugabe von Ethen zurückführte und nicht als Nebenreaktion der Fischer-Tropsch-Synthese ansah.[2]

Nach ersten Versuchen zur Optimierung der Reaktion in Richtung der Aldehydbildung, die er im Juli 1938 begann, reichte Roelen bereits Ende des selben Jahres ein Patent für die Oxosynthese ein.[2] Der Name „Oxosynthese“ beruht auf der falschen Vermutung, dass es sich um eine generelle Synthese zur Herstellung von Aldehyden und Ketonen handelte, da bei der Hydroformylierung von Ethen das Nebenprodukt Diethylketon in großen Mengen anfiel.

Die Ruhrchemie, Otto Roelens Arbeitgeber, wählte als Lösungsmittel für die Hydroformylierung Toluol, da es sich leicht von den entstehenden Produkten abtrennen ließ. Bei einer Reaktionstemperatur von 115 °C erzielte der Prozess bei vollständigem Umsatz des Ethens eine Ausbeute von 70 bis 80 % Propionaldehyd, 15 % organische Nebenprodukte und 5 % Verlust.[3]

Cobaltcarbonylhydrid

Als Katalysator verwendete Roelen einen Cobalt-, Thoriumoxid- und Magnesiumoxid enthaltenden Katalysator, der sonst für die Fischer-Tropsch-Synthese eingesetzt wurde. Er fand jedoch, dass viele andere Cobaltsalze als Katalysator-Precursor geeignet waren und vermutete, dass Cobaltcarbonylhydrid die aktive Katalysatorspezies war.[3]

Die I. G. Farben verwendete eine Prozessvariante mit einem auf Bimsstein fixierten Katalysator in einem wässrigen System. Als Einsatzstoffe nutzte die I. G. Farben ein äquimolares Gemisch von Ethen, Kohlenstoffmonoxid und Wasserstoff bei Reaktionstemperaturen von 150 bis 200 °C und einem Reaktionsdruck von 15 bis 30 MPa. Bei dieser Prozessvariante wurde etwa 20 bis 25 % des Ethens zum Ethan hydriert, die Selektivität zum Propionaldehyd betrug nur 65 %. Der Verlust an Katalysator wurde durch Zugabe von Cobaltfettsäuresalzen ausgeglichen.[3]

Roelen arbeitete bereits früh an der Hydroformylierung von Fischer-Tropsch-Olefinen mit einer Kettenlänge von 11 bis 17 Kohlenstoffatomen für die Herstellung von Fettalkoholen. Im Jahr 1940 begann die Ruhrchemie mit dem Bau einer Anlage, deren Kapazität 7000 Jahrestonnen Fettalkohole betragen sollte. Die Ruhrchemie nahm die Anlage im Krieg nicht mehr in Betrieb.[2]

Neben dem ursprünglichen Verfahren der Ruhrchemie entwickelten Firmen wie Union Carbide, BASF und Shell Verfahrensvarianten, die bei Drücken von etwa 5 MPa und Temperaturen von etwa 100 °C arbeiten. Die Prozesse beruhten auf phosphanmodifizierten Cobalt- und Rhodiumkomplexen. Lauri Vaska berichtete im Jahr 1963 über die Darstellung des Komplexes Rhodiumtetracarbonylhydrid.[4] Diesen Komplex und seine Triphenylphosphananaloga setzte Geoffrey Wilkinson ab 1968 für die Hydroformylierung ein.[5] Phospanmodifizierte Rhodiumcarbonylhydride gelten als zweite Generation der Hydroformylierungskatalysatoren.[6] Sie wurden ab 1976 von Union Carbide im industriellen Maßstab eingesetzt und erlaubten eine Absenkung der Betriebsdrücke gegenüber dem ursprünglichen Oxoverfahren. Shell nutzte ein tributylphosphanmodifiziertes Cobaltcarbonylhydrid zur Hydroformylierung längerkettiger Olefine, die direkt zum Alkohol weiterhydriert wurden.[6]

Probleme mit der Deaktivierung des Katalysators und seines Austrags verbesserten sich in den 1980er Jahren entscheidend durch die Einführung wasserlöslicher Katalysatoren im Ruhrchemie/Rhône-Poulenc-Verfahren.[7] Basierend auf dem von Wilkinson entwickelten Rhodiumtristriphenylphospahncarbonylhydrid und den Arbeiten von Kuntz bei Rhône Poulenc entwickelte die Ruhrchemie innerhalb von 24 Monaten und mit einem Scale-Up-Faktor von 1 : 24000 den technischen Prozess.[8] Die wasserlöslichen Rhodiumkatalysatoren gelten als dritte Generation der Hydroformylierungskatalysatoren.[6]

Seit Mitte der 1990er Jahre wird versucht, durch Einsatz von Lösungsmitteln wie etwa überkritisches Kohlenstoffdioxid, perfluorierte Systeme oder ionische Flüssigkeiten die Reaktion weiter zu optimieren.[9] Des Weiteren wurden neben dem Ruhrchemie/Rhône-Poulenc-Verfahren andere Wege und Methoden der Heterogenisierung erprobt. Dabei konnte meist das Problem des Katalysatoraustrags nicht gelöst werden.[8]

Grundlagen

Die allgemeine Reaktionsgleichung der Hydroformylierung lautet:

Hydroformylierung eines Alkens (R1 bis R3 Organylgruppen (z. B. Alkyl- oder Arylgruppen) oder Wasserstoffatome).

Viele Olefine (Alkene und Cycloalkene) sind der Hydroformylierung zugänglich. Es handelt sich formal um eine Addition von Wasserstoff und einer Formylgruppe an die Doppelbindung eines Olefins, wobei die Kombination Olefin/Katalysator eine wesentliche Rolle für die zu erzielenden Umsätze und Selektivitäten spielt. Kurzkettige Olefine reagieren meist schneller als längerkettige Olefine und Cycloolefine, lineare Olefine reagieren schneller als verzweigte. Fast alle Olefine lassen sich hydroformylieren, wobei die Reaktion von vierfach mit Alkylgruppen substituierten Olefinen, die zu einem quarternären Kohlenstoffatom führen würden, nur selten gelingt. Styrol lässt sich durch Cobaltkatalysatoren kaum hydroformylieren, mit Rhodiumkatalysatoren werden dagegen hohe Umsätze erzielt. Konjugierte Diene lassen sich mit Rhodium-Phosphan-Katalysatoren zum Dialdehyd hydroformylieren, Cobaltkatalysatoren liefern durch Hydrierung einer Doppelbildung überwiegend Monoaldehyde. Nichtkonjugierte Diene lassen sich zu Dialdehyden hydroformylieren, wenn die Doppelbindungen in der Kette mindestens durch zwei Kohlenstoff-Kohlenstoff-Einfachbindungen getrennt sind. Allylalkohole, Allylester und Allylether lassen sich bevorzugt mit isomerisierungsfreien Katalysatoren hydroformylieren. α,β-ungesättigte Ketoverbindungen reagieren meist unter Hydrierung der Doppelbindung. Ungesättigte Carbonsäuren und Carbonsäureester lassen sich gut hydroformylieren, ebenso ungesättigte Aldehyde und Ketone mit nichtkonjugierten Doppelbindungen.

Die primären Produkte der Hydroformylierung sind Aldehyde, die durch Aldolkondensation, Hydrierung, Oxidation, Aminierung und andere Verfahren zu einer breiten Vielfalt von Folgeprodukten weiterverarbeitet werden. Über 70 % der industriellen Gesamtproduktion entfällt auf die Produktion von n-Butanal, etwa 20 % auf die Produktion von C5- bis C13-Aldehyden, der Rest entfällt auf höhermolekulare Aldehyde und Propanal.

Durch Aldolkondensation unter basischer Katalyse wird etwa 50 % des n-Butanals unter Dehydratisierung zu 2-Ethylhexenal umgesetzt, das durch Hydrierung zu 2-Ethylhexanol (2-EH) umgesetzt wird.[10] Dieser Alkohol wird mit Phthalsäureanhydrid zu Bis(2-ethylhexyl)phthalat, das allgemein vereinfachend als Dioctylphthalat (DOP) bezeichnet wird, umgesetzt. Bis(2-ethylhexyl)phthalat ist ein wichtiger Weichmacher für Polyvinylchlorid (PVC).[10] Etwa 2,5 Millionen Tonnen Bis(2-ethylhexyl)phthalat werden jährlich produziert.[11] Etwa 25 % des n-Butanals wird zu n-Butanol hydriert, das als Lösungsmittel und für Veresterungen verwendet wird.[10] Die höhermolekularen Aldehyde, die zum Beispiel durch Hydroformylierung von SHOP-Olefinen mit Cobaltkatalysatoren erhalten werden, werden meist zu Fettalkoholen hydriert.[10] Diese werden, oft nach Ethoxylierung, sulfatiert und nach Neutralisation mit Natronlauge oder Ammoniak als anionische Tenside verwendet.

Allgemeine Struktur eines Rhodiumkatalysators (Ar = Aryl, z. B. Phenyl).

Als Hydroformylierungskatalysatoren werden Metallcarbonylhydride und deren Derivate eingesetzt. Sie können durch die allgemeine Formel

$ \mathrm {H_{n}M_{m}(CO)_{x}L_{y}} $

beschrieben werden. Die verwendeten Katalysatoren haben eine eindeutig definierte Struktur und lassen sich genau charakterisieren und in gleich bleibender Qualität synthetisieren oder in-situ generieren. Im katalytischen Prozess sind alle Metallatome als aktive Zentren für die Synthese des Produktes zugänglich. Die chemische Industrie verwendet Cobalt- und Rhodiumkomplexe mit verschiedenen Kohlenstoffmonoxid-, Phosphin- und Phosphit-Liganden. Komplexe mit Metallen der Eisengruppe wie Iridium, Eisen, Ruthenium[12] und Osmium sowie polymetallische Systeme wie Platin/Zinn wurden untersucht, wiesen jedoch nicht die gleiche Aktivität wie Rhodium und Cobaltkatalysatoren auf.[13] Rhodiumkomplexe sind die aktivsten Hydroformylierungskatalysatoren und etwa 1000-mal aktiver als Cobaltkomplexe. Die Hydroformylierungsaktivität des metallorganischen Katalysatorkomplexes sinkt vom Cobaltkomplex zu den Iridium-, Ruthenium-, Osmium-, Mangan- und Eisenkomplexen jeweils etwa um den Faktor 10.

Das Ligandendesign hat einen großen Einfluss auf das n-/iso-Verhältnis der entstehenden Produkte, vor allem durch sterische Effekte. Weiterhin hat das Verhältnis von Metall zu Ligand einen Einfluss auf die n-/iso-Selektivität und die Nebenreaktionen. Geringe Zusätze tertiärer Amine können die Reaktion beschleunigen; höhere Konzentrationen können dagegen zur vollständigen Unterdrückung der Reaktion führen. Beim Einsatz von Rhodium als Katalysatormetall ist die katalytisch aktive Spezies ein trigonal-bipyramidaler Rhodiumcarbonylhydrido-Komplex, der in zwei isomeren Formen vorliegt. Die zwei Phosphanliganden besetzen entweder eine äquatorial-äquatoriale (ee) oder die äquatorial-apicale (ea) Position. Durch Einsatz von bidentaten Diphosphanliganden wurden gute Selektivitäten zum linearen Aldehyd gefunden.[14] Der Einfluss des sogenannten Bisswinkels der Diphosphanliganden wurde eingehend untersucht.[15]

Neben den sterischen Effekten beeinflussen die elektronischen Effekte des Liganden die Katalysatoraktivität. Gute π-Akzeptoren wie Phosphite senken in Rhodiumkomplexen durch eine starke Rückbindung die Elektronendichte am Metall und schwächen dementsprechend die Rhodium-Kohlenstoffmonoxid-Bindung. Die Insertierung des Kohlenstoffmonoxids in die Metall-Alkyl-Bindung wird dadurch erleichtert. Metallorganische Rhodiumphosphitkomplexe sind daher sehr gute Hydroformylierungskatalysatoren.

Ein wichtiges Kriterium der Hydroformylierung ist die Regioselektivität zum n- oder iso-Produkt. So wird das n-Isomer der Propenhydroformylierung im industriellen Maßstab zu 2-Ethylhexanol weiterverarbeitet, wohingegen das iso-Isomer nur untergeordnete Bedeutung für die Darstellung von Isobutanol, Neopentylglycol oder iso-Buttersäure hat. Der Schritt der Insertion des Olefins in die Metall-Wasserstoffbindung unter Bildung des Alkylkomplexes entscheidet mit über die Selektivität der Bildung von n- oder iso-Aldehyden:

n-/iso-Selektivität

Bei höhermolekularen Olefinen kann es zu einer Isomerisierung der Doppelbindung kommen, wodurch Gemische von Aldehyden gebildet werden. In die Metall-Kohlenstoff-Bindung des Alkylkomplexes insertiert ein Kohlenstoffmonoxidligand unter Bildung eines Acylkomplexes.

Keulemans stellte 1948 Regeln für die Produktverteilung auf (Keulemans-Regeln)[16] Demnach wird aus geradkettigen Olefinen stets ein Gemisch von n- und 2-Alkylalkoholen im Verhältnis von 40-60 % n- und 60-40 % 2-Alkylalkoholen. Eine Addition der Formylgruppe an tertiäre Kohlenstoffatome findet nicht statt; iso-Buten bildet beispielsweise nur das 3-Methylbutanol. Die Anlagerung an Kohlenstoffatome in α-Stellung zu tertiären Kohlenstoffatomen ist sterisch gehindert, kann jedoch stattfinden. Zur Anlagerung an Kohlenstoffatome in α-Stellung zu quartären Kohlenstoffatomen kommt es nicht. Ein isoliertes tertiäres Kohlenstoffatom behindert die Bildung der möglichen Isomere. Die Hydroformylierung wird immer von einer Doppelbindungsisomerisierung begleitet. Außer der 2-Alkylverzweigung besteht keine Tendenz zur Erhöhung des Verzweigungsgrades. Bevorzugt wird unter Verschiebung der Doppelbindung ein lineares Produkt erhalten.

Kinetische Untersuchungen lieferten für die cobaltkatalysierte Reaktion die folgende Geschwindigkeitsgleichung:[17][18]

$ {\frac {d\mathrm {(} Aldehyd)}{dt}}=k\mathrm {(} Olefin)\mathrm {(} Cobalt){\frac {P_{H_{2}}}{P_{CO}}} $

Die Reaktion ist mit etwa 125 kJ mol−1 exotherm.[19] Bei rhodiumkatalysierten Hydroformylierungen werden Wechselzahlen von etwa 6000 molOlefin molKatalysator-1 h-1 erreicht.[20]

Reaktionsmechanismus

Mechanismus der Hydroformylierung

Der katalytische Mechanismus der cobaltkatalysierten Hydroformylierung wurde 1960 vom späteren Nobelpreisträger Richard F. Heck und David Breslow untersucht und aufgeklärt.[21] Im Heck-Breslow-Mechanismus wird zunächst ein Kohlenstoffmonoxidligand aus Cobaltcarbonylhydrid unter Bildung einer 16-Elektronen-Spezies eliminiert (1). Dies schafft eine freie Koordinationsstelle, an die sich ein Olefin unter Ausbildung einer 18-Elektronen-Spezies mittels π-Bindung anlagern kann (2). Im nächsten Schritt folgt die Bildung eines 16-Elektronen-Alkylkomplexes (3), in dessen freie Koordinationsstelle ein Kohlenstoffmonoxidligand aufgenommen wird (4).[21] Dieser insertiert in die Metall-Kohlenstoffbindung des Alkylrestes unter Bildung eines 16-Elektronen-Acylkomplexes (5). Durch oxidative Addition von Wasserstoff (6) wird der Aldehyd freigesetzt und die aktive Spezies wieder hergestellt (7).[22] Unter Bildung des Ausgangskomplexes schließt sich der katalytische Kreislauf. Als Nebenreaktion kann der 16-Elektronen-Komplex in einer Gleichgewichtsreaktion ein Molekül Kohlenstoffmonoxid aufnehmen (8).

Rhodiumhydridocarbonyle und deren phosphanmodifizierte Analoga reagieren nach einem gleichartigen Mechanismus, der im Jahr 1968 von Geoffrey Wilkinson untersucht wurde. Im ersten Schritt dissoziiert demnach ein Phosphanligand aus dem Komplex und bildet eine planare, koordinativ ungesättigte 16-Elektronen-Spezies. An diese koordiniert ein Olefin unter Bildung eines 18-Elektroenen-Komplexes. Nach Insertion des Olefins in die Rhodium-Wasserstoff-Bindung unter Alkylkomplexbildung und nach Anlagerung eines weiteren Moleküls Kohlenstoffmonoxid insertiert dieses in die Rhodium-Alkylbindung unter Ausbildung des Acylkomplexes. Sowohl bei der cobalt- als auch bei der rhodiumkatalysierten Hydroformylierung gilt die nachfolgende oxidative Addition des Wasserstoffs als geschwindigkeitsbestimmender Schritt mit anschließender reduktiver Eliminierung des Aldehyds. Unter Anlagerung von Kohlenstoffmonoxid schließt sich der katalytische Zyklus und der Ausgangskomplex wird wieder hergestellt.

Die Ausbildung der quadratisch-planaren Zwischenstufe mit zwei sterisch anspruchsvollen Phosphanliganden gilt als Erklärung für das hohe n-/iso-Verhältnis der rhodiumkatalysierten Hydroformylierung. Die sterischen Zwänge im Übergangszustand bewirken, dass der Alkylligand bevorzugt linear koordiniert wird. Dies erklärt, warum das n-/iso-Verhältnis positiv durch zunehmende Phosphankonzentration und sinkenden Kohlenstoffmonoxid-Partialdruck beeinflusst wird.

Der Mechanismus wurde mittels infrarotspektroskopischen[23] und Hochdruck-NMR-Methoden untersucht.[24] Die Verwendung von Deuterium in der Reaktion (Deuteroformylierung) erlaubt die Untersuchung der entstehenden Produkte mittels 1H-NMR-Spektroskopie und damit Rückschlüsse auf den Mechanismus.[25]

Technische Verfahren

Die technischen Verfahren unterscheiden sich nach der Kettenlänge des zu hydroformylierenden Olefins in der Art des Katalysatormetalls sowie der Abtrennung des Katalysators. Das ursprüngliche Verfahren der Ruhrchemie setzte Ethen mittels Cobaltcarbonylhydrid zu Propanal um. Heute werden Prozesse mit auf Cobalt basierenden Katalysatoren hauptsächlich für die Produktion von mittel- bis langkettigen Olefinen eingesetzt, während auf Rhodium basierende Katalysatoren meist für die Hydroformylierung von Propen verwendet werden. Die Rhodiumkatalysatoren sind wesentlich teurer als Cobaltkatalysatoren. Bei der Hydroformylierung höhermolekularer Olefine ist die verlustfreie Abtrennung vom Katalysator schwierig. Die Verfahren unterscheiden sich hauptsächlich in der Art der Katalysatorabtrennung und der Rückgewinnung des Katalysators.

BASF-Verfahren

Im Hydroformylierungsverfahren der BASF (BASF-Oxoverfahren) werden meist höhere Olefine eingesetzt. Als Katalysator dient Cobaltcarbonylhydrid.[26] Der Katalysator wird von der flüssigen Produktphase durch Sauerstoff vom formal negativ geladenen Co−1 zum wasserlöslichen Co2+ oxidiert und durch Zugabe von wässriger Ameisen- oder Essigsäure abgetrennt. Dadurch bildet sich eine wässrige Phase aus, die das Katalysatormetall in Form seines Salzes enthält. Die wässrige Phase wird abgetrennt und das Cobalt in den Prozess zurückgeführt. Etwaige Verluste werden durch Zugabe frischer Cobaltsalze ausgeglichen. Eine Reaktion bei niedriger Temperatur führt zu einer erhöhten Selektivität zum linearen Produkt. Das Verfahren wird bei einem Druck von etwa 30 MPa und in einem Temperaturbereich von 150 bis 170 °C durchgeführt.[19]

Exxon-Verfahren

Das Exxon-Verfahren, auch Kuhlmann- oder PCUK-Oxoverfahren, dient zur Hydroformylierung von C6- bis C12-Olefinen. Zur Katalysatorrückgewinnung wird die organische Produktphase mit wässriger Natronlauge oder Natriumcarbonatlösung versetzt. Durch Extraktion mit Olefin und Neutralisation durch Zugabe von Schwefelsäurelösung unter Kohlenstoffmonoxiddruck wird das Metallcarbonylhydrid wiedergewonnen. Dieses wird mit Synthesegas ausgestrippt, vom Olefin aufgenommen und zum Reaktor zurückgeführt. Das Verfahren wird bei einem Druck von etwa 30 MPa und bei einer Temperatur von etwa 160 bis 180 °C in Gang gesetzt.[19]

Shell-Verfahren

Das Shell-Verfahren nutzt Cobaltkomplexe mit Phosphanliganden zur Hydroformylierung von C7- bis C14-Olefinen. Die entstehenden Aldehyde werden direkt zum Fettalkohol weiterhydriert. Diese werden vom Katalysator über Kopf abdestilliert und der Katalysator wird als Sumpfprodukt erhalten und kann wieder in den Prozess zurückgeführt werden. Das Verfahren besitzt eine gute Selektivität zu linearen Produkten, die als Tensidrohstoffe Verwendung finden. Es wird bei einem Druck von etwa 4 bis 8 MPa und in einem Temperaturbereich von etwa 150 bis 190 °C durchgeführt.[19]

UCC-Verfahren

Das UCC-Verfahren, auch als Low-Pressure-Oxo-Verfahren (LPO) bezeichnet, nutzt einen in hochsiedendem Dicköl gelösten Rhodiumkatalysator für die Hydroformylierung von Propen. Die Reaktionsmischung wird in einem Fallfilmverdampfer von flüchtigen Bestandteilen getrennt. Die flüssige Phase wird destilliert und n-Butanal über Kopf vom der Katalysatorphase entstammenden Dicköl getrennt. Bei diesem Verfahren wird ein Druck von etwa 1,8 MPA in einem Temperaturbereich von etwa 95 - 100 °C eingesetzt.[19]

Ruhrchemie/Rhône-Poulenc-Verfahren

Prozessschema des Ruhrchemie/Rhône-Poulenc-Verfahrens

Im Ruhrchemie/Rhône-Poulenc-Verfahren wird als Katalysator ein mit Triphenylphosphantrisulfonat (TPPTS)[27] komplexierter Rhodiumkomplex (Kuntz-Cornils-Katalysator) verwendet. Durch die Substitution des Triphenylphosphanliganden mit Sulfonatgruppen besitzt der metallorganische Komplex hydrophile Eigenschaften. Der Katalysator ist durch die neunfache Sulfonierung sehr gut in Wasser löslich (etwa 1 kg l−1),[28] jedoch nicht in der entstehenden Produktphase. Das wasserlösliche Triarylphosphansulfonat wird im etwa 50-fachen Überschuss eingesetzt, wodurch das Auswaschen des Katalysators, das sogenannte „Leaching“, effektiv unterdrückt wird. Als Edukte werden Propen sowie Synthesegas, das aus Wasserstoff und Kohlenmonoxid im Verhältnis 1,1:1 besteht, eingesetzt. Es kann aus verschiedenen von Erdöl unabhängigen Rohstoffquellen erhalten werden.[29] Als Produkt entsteht ein Gemisch aus n- und iso-Butanal im Verhältnis 96:4.[28] Die Selektivität zum n-Aldehyd ist hoch, Nebenprodukte wie Alkohole, Ester und höhersiedende Fraktionen werden kaum gebildet.[28]

Das Ruhrchemie/Rhône-Poulenc-Verfahren ist das erste kommerzialisierte Zwei-Phasen-System, in dem der Katalysator in wässriger Phase vorliegt. Im Fortgang der Reaktion bildet sich eine organische Produktphase aus, die mittels Phasenabscheidung kontinuierlich abgetrennt wird, wobei die wässrige Katalysatorphase im Reaktor verbleibt.[28]

In diesem Verfahren werden in einem Rührkesselreaktor das Olefin und das Synthesegas von unten in den Reaktor geführt und die Phasen des Reaktionsgemisches intensiv durchmischt. Der entstehende Rohaldehyd wird am Kopf abgezogen. Im Phasenseparator wird die organische von der wässrigen Phase getrennt. Die wässrige katalysatorhaltige Lösung wird über einen Wärmetauscher vorgewärmt und wieder in den Reaktor gepumpt.[28] In einem Stripper wird das überschüssige Olefin durch Synthesegas in Abwesenheit eines Katalysators von der organischen Phase getrennt und dem Reaktor wieder zugeführt. Die freiwerdende Reaktionswärme wird über Wärmetauscher zur Prozessdampferzeugung genutzt.

Der erzeugte Prozessdampf wird zur anschließenden Destillation der organischen Phase zur Trennung in iso- und n-Butanal genutzt.[28] Der Destillationssumpf wird über einen Fallfilmverdampfer erwärmt und der Destillation wieder zugeführt.[30] Potentielle Katalysatorgifte, die über das Synthesegas in die Reaktion eingeführt werden, werden mit dem Aldehyd abgetrennt. Dadurch kommt es zu keiner Anreicherung von Katalysatorgiften, die aufwändige Feinreinigung des Synthesegases kann daher entfallen.[28]

In Oberhausen wurde 1984 eine Anlage gebaut, die im Jahr 1988 und nochmals 1998 auf eine Produktionskapazität von 500.000 t/Jahr Butanal erweitert wurde. Dabei werden 98 % des Propens umgesetzt und eine hohe Selektivität erzielt. Während des Prozesses geht weniger als 1 ppb Rhodium verloren.[30]

Hydroformylierung funktionalisierter Olefine

Neben reinen Olefinen können funktionalisierte Olefine wie Allylalkohol hydroformyliert werden. Als Zielprodukt wird mit isomerisierungsfreien Katalysatoren wie Rhodium-Triphenylphosphan-Komplexen 1,4-Butandiol und sein Isomeres erhalten. Beim Einsatz des Cobaltkomplexes erhält man durch Isomerisierung der Doppelbindung n-Propanal.[31] Die Hydroformylierung von Alkenylethern und Alkenylestern erfolgt meist in α-Position zur Ether- oder Esterfunktion. Der hydrdoformylierte Ester kann durch nachfolgende Abspaltung der Carbonsäure aus dem Hydroformylierungsprodukt zu α,β-ungesättigten Aldehyden führen.

Die Hydroformylierung von Acrylsäure und Methacrylsäure untersuchte Jürgen Falbe.[32] Danach bildet sich bei der rhodium-katalysierten Variante im ersten Schritt das Markownikoff-Produkt. Durch die Wahl der Reaktionsbedingungen lässt sich die Reaktion in verschiedene Richtungen lenken. Eine hohe Reaktionstemperatur und niedrige Kohlenstoffmonoxiddrücke begünstigen die Isomerisierung des Markownikoff-Produkts zum thermodynamisch stabileren β-Isomer, das zum n-Aldehyd führt. Niedrige Temperaturen, hohe Kohlenstoffmonoxiddrücke und ein Überschuss von Phosphinen, die freie Koordinationsstellen besetzen können, führen zur schnelleren Hydroformylierung in α-Position zur Estergruppe und unterdrücken die Isomerisierung.[32]

Die Hydroformylierung von konjugierten Olefinen führt mit vielen Katalysatorsystemen durch Hydrierung einer Doppelbindung zu denselben Produkten wie die entsprechenden Monoolefine. Mit Rhodium-Phosphin-Komplexen führt die Hydroformylierung zu Dialdehyden.[33] Die Hydroformylierung von Alkinen führt zu α,β-ungesättigten Olefinen.[34]

Organische Synthesen

Prochirale Olefine lassen sich mit chiralen Komplexen enatioselektiv hydroformylieren. So lässt sich beispielsweise Dexibuprofen, das (+)-(S)-Enantiomer des Ibuprofen, durch enantioselektive Hydroformylierung und anschließende Oxidation herstellen.[35] Durch Einsatz chiraler Phosphanliganden wie DIOP, DIPAMP oder BINAPHOS lassen sich hohe Enantiomerenüberschuss erzielen.[36] Die asymmetrische Hydroformylierung dient unter anderem der Synthese chiraler Produkte, die in der Pharmazie oder als Aktivkomponente für Agrochemikalien eingesetzt werden.[37] Im Gegensatz zur technischen Hydroformylierung ist das Zielprodukt der verzweigte Aldehyd mit einem Chiralitätszentrum.[38]

Hydroformylierung von Styrol

Nur das Produkt der Markownikow-Addition führt zum Zielprodukt, während der n-Aldehyd achiral ist. Die Stereochemie wird im Schritt der Olefinkoordination festgelegt.[10]

Die Hydroformylierung lässt sich durch den Ersatz von Wasserstoff durch Monohydrosilanen (H-Si-R3) zur so genannten Silylformylierung modifizieren. Dabei wird eine Trialkylsilylguppe und eíne Formylgruppe an die Dreifachbindung eines Alkins und Bildung eines 3-Silyl-2-alkenals addiert.[39]

Die Tandem-Reaktion von Hydroformylierung mit zum Beispiel Knoevenagel-Reaktionen, Wittig-Olefinierungen oder Allylborierungen ermöglicht den Aufbau komplexer Moleküle, die sich zum Teil, etwa in Kombination mit einer reduktiven Aminierung als Hydroaminomethylierung, in einer Eintopfreaktion durchführen lassen.[40]

Neben- und Folgereaktionen

Reaktionen der Olefine

Nebenreaktionen der Olefine sind die Isomerisierung und Hydrierung der olefinischen Doppelbindung. Während die durch Hydrierung der Doppelbindung entstehenden Alkane nicht weiter an der Reaktion teilnehmen, ist die Isomerisierung der Doppelbindung unter späterer Bildung der n-Alkylkomplexe ein gewünschter Vorgang. Die Hydrierung ist meist von untergeordneter Bedeutung. Cobaltphosphanmodifizierte Katalysatoren können jedoch eine erhöhte Hydrieraktivität aufweisen, wobei bis zu 15 % des Olefins hydriert werden.

Reaktionen der Aldehyde

Eine meist gewünschte Nebenreaktion ist die Hydrierung der Aldehyde zu Alkoholen. Höhere Temperaturen und Wasserstoffpartialdrücke begünstigen die Hydrierung der entstehenden Aldehyde zum Alkohol. Die Kinetik der Alkoholbildung mit Cobaltkomplexen lässt sich mit folgender Gleichung beschreiben:

$ {\frac {d\mathrm {(} Alkohol)}{dt}}=k\mathrm {(} Aldehyd)\mathrm {(} Cobalt){\frac {P_{H_{2}}}{P_{CO}^{2}}} $

Als Reaktionsmechanismus wird angenommen, dass sich zunächst der π-Komplex des Aldehyds mit dem Katalysator bildet. Unter Umlagerung zum Alkoholat und anschließender oxidativer Addition von Wasserstoff werden der Alkohol und der Ausgangskomplex gebildet:

$ \mathrm {RCHO+HCo(CO)_{3}\to \ (\pi -RCHO)HCo(CO)_{3}} $
$ \mathrm {(\pi -RCHO)HCo(CO)_{3}\to \ RCH_{2}OCo(CO)_{3}} $
$ \mathrm {RCH_{2}OCo(CO)_{3}+H_{2}\to \ RCH_{2}OH+HCo(CO)_{3}} $

Die aldehydische Kohlenstoff-Sauerstoff-Doppelbindung kann ebenfalls der Hydroformylierung unterliegen und zu Ameisensäure und ihren Estern führen. Dabei wird in die Sauerstoff-Metall-Bindung Kohlenmonoxid insertiert. Der entstehende Formylkomplex kann unter oxidativer Addition von Wasserstoff den Ameisensäureester freisetzen:

$ \mathrm {RCH_{2}OCo(CO)_{3}+CO\to \ (RCH_{2}OCO)Co(CO)_{3}} $
$ \mathrm {(RCH_{2}OCO)Co(CO)_{3}+H_{2}\to \ HCOOCH_{2}R+HCo(CO)_{3}} $

Die primär gebildeten Aldehyde können ebenfalls weiterreagieren und durch Aldolkondensation Produkte wie die Zielproduktvorstufe 2-Ethylhexenal oder höhermolekulare Kondensationsprodukte, sogenanntes Dicköl, bilden.

Reaktionen des Katalysatorkomplexes

Die eingesetzten Triphenylphosphinkomplexe können unter Reaktionsbedingungen durch Hydrierung Benzol freisetzen. Die Insertion von Kohlenstoffmonoxid in eine intermediäre Metall-Kohlenstoff-Bindung kann zur Bildung von Benzaldehyd oder durch nachfolgende Hydrierung zu Benzylalkohol führen.[35] Der Ligand kann Propen anlagern, wobei das entstehende Diphenylpropylphosphin auf Grund seiner erhöhten Basizität die Reaktion inhibieren kann.[35]

Spurenverunreinigungen der Edukte mit Sauerstoff oder Schwefel und deren Verbindungen können zur Oxidation von Phosphor-(III)- zu Phosphor-(V)-Verbindungen führen beziehungsweise zu katalytisch inaktiven Metalloxiden und -sulfiden.

Literatur

  • Piet W. N. M. van Leeuwen, Carmen Claver: Rhodium Catalyzed Hydroformylation. Verlag Springer Netherlands, 2000, ISBN 0-7923-6551-8.
  • Arno Behr:Angewandte homogene Katalyse. Wiley-VCH, 2008, ISBN 978-3-527-31666-3.
  • Boy Cornils, Wolfgang A. Herrmann: Aqueous-Phase Organometallic Catalysis, Concepts and Applications. Wiley-VCH Verlag, 1998, ISBN 3-527-29478-3.

Einzelnachweise

  1. H. J. Arpe: Industrielle organische Chemie. Wiley-VCH, Weinheim 2007, ISBN 978-3-527-31540-6, S. 138.
  2. 2,0 2,1 2,2 2,3 Boy Cornils, Wolfgang A. Herrmann, Manfred Rasch: Otto Roelen als Wegbereiter der industriellen homogenen Katalyse. In: Angewandte Chemie. 106, 1994, S. 2219–2238, doi:10.1002/ange.19941062104.
  3. 3,0 3,1 3,2 B.I.O.S. - Final Report No. 447, Item No. 30: Interrogation of Dr. Otto Roelen of Ruhrchemie A.G. Abgerufen am 14. Juni 2012.
  4. S. S. Bath, L. Vaska: Five-Coordinate Hydrido-Carbonyl Complexes of Rhodium and Iridium and their Analogy with CoH(CO)4. In: Journal of the American Chemical Society. 85, 1963, S. 3500–3501, doi:10.1021/ja00904a044.
  5. D. Evans, J. A. Osborn, G. Wilkinson: Hydroformylation of alkenes by use of rhodium complex catalysts. In: Journal of the Chemical Society A: Inorganic, Physical, Theoretical. 1968, S. 3133, doi:10.1039/J19680003133.
  6. 6,0 6,1 6,2 Jens Weitkamp, Roger Gläser: Katalyse. In: Winnacker/Küchler. Chemische Technik: Prozesse und Produkte. Herausgegeben von Roland Dittmeyer, Wilhelm Keim, Gerhard Kreysa, Alfred Oberholz, Band 1: Methodische Grundlagen. Wiley-VCH Verlag, Weinheim 2004, ISBN 3-527-30767-2, S. 47–49.
  7. S. Kanagasabapathy, Zhigao Xia, Georgios Papadogianakis, Bernhard Fell: Hydroformylierung mit wasser- und methanollöslichen Rhodiumcarbonyl/Phenyl-sulfonatoalkylphosphan-Katalysatorsystemen - Ein neues Konzept für die Hydroformylierung höhermolekularer Olefine. In: Journal für Praktische Chemie/Chemiker-Zeitung. 337, 1995, S. 446–450, doi:10.1002/prac.19953370197.
  8. 8,0 8,1 Boy Cornils, Wolfgang A. Herrmann: Aqueous-Phase Organometallic Catalysis, Concepts and Applications. Wiley-VCH Verlag, 1998, ISBN 3-527-29478-3, S. 271–273.
  9. Marco Haumann, Anders Riisager: Hydroformylation in Room Temperature Ionic Liquids (RTILs): Catalyst and Process Developments. In: Chemical Reviews. 108, 2008, S. 1474–1497, doi:10.1021/cr078374z.
  10. 10,0 10,1 10,2 10,3 10,4 Dirk Steinborn: Fundamentals of Organometallic Catalysis. Wiley-VCH Verlag, 2011, ISBN 3-527-32717-7.
  11. C. Kohlpaintner, M. Schulte, J. Falbe, P. Lappe, J. Weber: Aldehydes, Aliphatic. In: Ullmann's Encyclopedia of Industrial Chemistry 2008, Wiley-VCH, Weinheim. doi:10.1002/14356007.a01_321.pub2.
  12. Georg Süss-Fink, Josel Reiner: The cluster anion [HRu3(CO)11]? as catalyst in hydroformylation, hydrogenation, silacarbonylation and hydrosilylation reactions of ethylene and propylene. In: Journal of Molecular Catalysis. 16, 1982, S. 231–242, doi:10.1016/0304-5102(82)85011-6.
  13. B. Cornils, W. A. Herrmann, R. Schlögl, C. H. Wong: Catalysis from A to Z. Verlag Wiley-VCH, 2000, ISBN 3-527-29855-X.
  14. T. J. Devon u. a.: Chelate ligands for low pressure hydroformylation catalyst and process employing same, US 4694109, 15. September 1987, Eastman Kodak Company.
  15. Piet W.N.M. van Leeuwen, Zoraida Freixa: Bite Angle Effects of Diphosphines in Carbonylation Reactions. In: László Kollár: Modern Carbonylation Methods, Verlag Wiley-VCH, Weinheim, ISBN 978-3-527-31896-4.
  16. A. I. M. Keulemans, A. Kwantes, Th. van Bavel: The structure of the formylation (OXO) products obtained from olefines and watergas. In: Recueil des Travaux Chimiques des Pays-Bas. 67, 1948, S. 298–308, doi:10.1002/recl.19480670406.
  17. G. Natta, R. Ercoli, S. Castellano, F. H. Barbieri: The Influence of Hydrogen and Carbon Monoxide Partial Pressures on the Rate of the Hydroformylation Reaction. In: Journal of the American Chemical Society. 76, 1954, S. 4049–4050, doi:10.1021/ja01644a071.
  18. G. Natta: Oxosynthese, ihre Kinetik und verwandte Reaktionen. In: Brennstoff-Chemie, Nr. 11/12, Bd. 36, 1. Juni 1955, S. 176–181.
  19. 19,0 19,1 19,2 19,3 19,4 Boy Cornils, Wolfgang A. Herrmann, Chi-Huey Wong, Horst -Werner Zanthoff: Catalysis from A to Z: A Concise Encyclopedia. Verlag Wiley-VCH Verlag, 2012, ISBN 3-527-33307-X.
  20. Detlef Selent, Dieter Hess, Klaus-Diether Wiese, Dirk Röttger, Christine Kunze, Armin Börner : Rhodiumkatalysierte Isomerisierung/Hydroformylierung interner Octene mit neuartigen Phosphorliganden. In: Angew. Chem. 113, 2001, S. 1739, doi:10.1002/1521-3757(20010504)113:9<1739::AID-ANGE17390>3.0.CO;2-5.
  21. 21,0 21,1 Richard F. Heck, David S. Breslow: The Reaction of Cobalt Hydrotetracarbonyl with Olefins. In: Journal of the American Chemical Society. 83, 1961, S. 4023–4027, doi:10.1021/ja01480a017.
  22. Jack Halpern: Organometallic chemistry at the threshold of a new millennium. Retrospect and prospect. In: Pure Appl. Chem., 2001, Vol. 73, No. 2, S. 209–220.
  23. Marc Garland, Gyorgy Bor: Infrared spectroscopic studies on metal carbonyl compounds. 24. Observation of the infrared spectrum of an acylrhodium tetracarbonyl during the hydroformylation of olefins with rhodium-containing catalyst precursors. In: Inorganic Chemistry. 28, 1989, S. 410–413, doi:10.1021/ic00302a008.
  24. Claudio Bianchini, Hon Man Lee, Andrea Meli, Francesco Vizza: In Situ High-Pressure 31P{1H}-NMR Studies of the Hydroformylation of 1-Hexene by RhH(CO)(PPh3)3. In: Organometallics. 19, 2000, S. 849–853, doi:10.1021/om9907627.
  25. Raffaello Lazzaroni, Andrea Raffaelli, Roberta Settambolo, Sergio Bertozzi, Giovanni Vitulli: Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. In: Journal of Molecular Catalysis. 50, 1989, S. 1–9, doi:10.1016/0304-5102(89)80104-X.
  26. G. Duembgen, D. Neubauer: Grosstechnische Herstellung von Oxo-Alkoholen aus Propylen in der BASF. In: Chemie Ingenieur Technik - CIT. 41, 1969, S. 974–980, doi:10.1002/cite.330411708.
  27. W. A. Herrmann, C. W. Kohlpaintner, Angew. Chem. 1993, 105, S. 1588–1609.
  28. 28,0 28,1 28,2 28,3 28,4 28,5 28,6 Ernst Wiebus, Boy Cornils: Die großtechnische Oxosynthese mit immobilisiertem Katalysator. In: Chemie Ingenieur Technik. 66, 1994, S. 916–923, doi:10.1002/cite.330660704.
  29. W. Keim: C1 Chemistry: potential and developments. In: Pure & AppL Chem., Vol. 58, No. 6, S. 825–832, 1986 (PDF).
  30. 30,0 30,1 Manfred Baerns, Arno Behr, Axel Brehm, Jürgen Gmehling, Hanns Hofmann, Ulfert Onken: Technische Chemie Lehrbuch. 480 Abbildungen, 190 Tabellen. Wiley VCH Verlag, 2006, ISBN 3-527-31000-2.
  31. Bernhard Fell, Wolfgang Rupilius, Friedrich Asinger: Zur Frage der Isomerenbildung bei der Hydroformylierung höhermolekularer Olefine mit komplexen Kobalt- und Rhodiumkatalysatoren. In: Tetrahedron Letters 9, 1968, S. 3261–3266, doi:10.1016/S0040-4039(00)89542-8.
  32. 32,0 32,1 Jürgen Falbe, Ch. R. Adams: Carbon Monoxide in Organic Synthesis. Springer Verlag, 1970, ISBN 3-540-04814-6.
  33. Bernhard Fell, Wolfgang Rupilius: Dialdehydes by hydroformylation of conjugated dienes. In: Tetrahedron Letters. 10, 1969, S. 2721–2723, doi:10.1016/S0040-4039(01)88252-6.
  34. John R. Johnson, Gregory D. Cuny, Stephen L. Buchwald: Rhodium-Catalyzed Hydroformylation of Internal Alkynes to α,β-Unsaturated Aldehydes. In: Angewandte Chemie. International Edition in English. 34, 1995, S. 1760–1761, doi:10.1002/anie.199517601.
  35. 35,0 35,1 35,2 Arno Behr: Angewandte homogene Katalyse, Wiley-VCH. Weinheim, ISBN 3-527-31666-3.
  36. Kyoko Nozaki, Nozomu Sakai, Tetsuo Nanno, Takanori Higashijima, Satoshi Mano, Toshihide Horiuchi, Hidemasa Takaya: Highly Enantioselective Hydroformylation of Olefins Catalyzed by Rhodium(I) Complexes of New Chiral Phosphine/Phosphite Ligands. In: Journal of the American Chemical Society. 119, 1997, S. 4413–4423, doi:10.1021/ja970049d.
  37. Carlo Botteghi, Stefano Paganelli, Alberto Schionato, Mauro Marchetti: The asymmetric hydroformylation in the synthesis of pharmaceuticals. In: Chirality. 3, 1991, S. 355–369, doi:10.1002/chir.530030422.
  38. Francine Agbossou, Jean-Francois Carpentier, Andre Mortreux: Asymmetric Hydroformylation. In: Chemical Reviews. 95, 1995, S. 2485–2506, doi:10.1021/cr00039a008.
  39. Hiromi Okazaki, Yukio Kawanami, Keiji Yamamoto: The Silylformylation of Simple 1-Alkynes Catalyzed by [Rh(cod)][BPh4] in an Ionic Liquid, [Bmim][PF6], under Biphasic Conditions: An Efficiently Reusable Catalyst System... In: Chemistry Letters. 2001, S. 650–651, doi:10.1246/cl.2001.650.
  40. Delphine Crozet, Martine Urrutigo ty, Philippe Kalck: Recent Advances in Amine Synthesis by Catalytic Hydroaminomethylation of Alkenes. In: ChemCatChem. 3, 2011, S. 1102–1118, doi:10.1002/cctc.201000411.

Weblinks

 Commons: Hydroformylierung – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde am 16. August 2012 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.

cosmos-indirekt.de: News der letzten Tage