Methacrylsäure

Erweiterte Suche

Strukturformel
Struktur von Methacrylsäure
Allgemeines
Name Methacrylsäure
Andere Namen
  • Methylacrylsäure
  • 2-Methylpropensäure
  • alpha-Methylacrylsäure
  • Isobutensäure
  • MAA (Methacrylic acid)
Summenformel C4H6O2
CAS-Nummer 79-41-4
PubChem 4093
Kurzbeschreibung

farblose Flüssigkeit mit stechendem Geruch[1]

Eigenschaften
Molare Masse 86,09 g·mol−1[1]
Aggregatzustand

flüssig

Dichte

1,02 g·cm−3[1]

Schmelzpunkt

15 °C[1]

Siedepunkt

161 °C[1]

Dampfdruck

87 hPa (20 °C)[1]

Löslichkeit

mischbar mit Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
05 – Ätzend 07 – Achtung

Gefahr

H- und P-Sätze H: 312-302-314
P: 260-​280-​302+352-​301+330+331-​305+351+338-​309-​310Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [1]
EU-Gefahrstoffkennzeichnung [3] aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
Ätzend
Ätzend
(C)
R- und S-Sätze R: 21/22-35
S: (1/2)-26-36/37/39-45
MAK

5 ml·m−3 oder 18 mg·m−3[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Methacrylsäure ist eine ungesättigte Carbonsäure, eine sogenannte Alkensäure, und wird als Ausgangsstoff zur Herstellung von Kunststoffen verwendet.

Geschichte und Vorkommen

Methacrylsäure wurde von Edward Frankland und Baldwin Francis Duppa zuerst in Form ihres Ethylesters durch Reaktion von Phosphorpentachlorid mit einem Ester der Isobuttersäure erhalten.[4] Die polymere Form der Methacrylsäure wurde im Jahre 1880 zuerst beschrieben.[5] Sie kommt als Ester natürlich in Kamillenöl vor.

Gewinnung und Darstellung

Mehr als 3 Millionen Tonnen Methacrylsäure werden jährlich produziert, wobei ein erheblicher Teil von Synthesen anderer chemischer Verbindungen ebenfalls über die Zwischenstufe Methacrylsäure gehen. Industriell wird sie aus Isobutylen und tert-Butanol hergestellt, welche erst zu Methacrolein und dieses dann weiter zu Methylmethacrylat oxidiert werden.[6] Synthetisch kann sie ebenfalls durch Hydrolyse von Acetoncyanhydrin und anschließende Wasserabspaltung hergestellt werden.

Eigenschaften

Physikalische Eigenschaften

Methacrylsäure ist eine farblose Flüssigkeit mit unangenehmem Geruch. Die Dämpfe der Methacrylsäure sind schwerer als Luft. Feste Methacrylsäure bildet prismatische Kristalle.

Chemische Eigenschaften

Methacrylsäure löst sich in Wasser, Alkohol und Ether; die wässrige Lösung reagiert stark sauer. Sie polymerisiert sehr leicht beim Erwärmen, bei Zutritt von Licht oder in Gegenwart von Salzsäure bzw. Peroxiden unter Bildung hochpolymerer Produkte. Durch Zusatz von Stabilisatoren wie Hydrochinon kann Methacrylsäure dennoch längere Zeit in monomerer Form aufbewahrt werden. Die Salze und Ester werden als Methacrylate bezeichnet.

Verwendung

Bei der Herstellung von Kunststoffdispersionen durch die Emulsionspolymerisation wird häufig ein geringer Anteil Methacrylsäure u. a. zur Erhöhung der kollidalen Stabilität copolymerisiert. Im Gegensatz zur Acrylsäure wird die Methacrylsäure dabei gleichmäßiger in die Teilchen eingebaut. Wässrige (neutralisierte) Lösungen polymerer Methacrylsäure oder methacrylsäurehaltiger Copolymere finden Verwendung als Netzmittel oder Verdicker z.B. bei der Herstellung von Dispersionsfarben. Es dient jedoch auch zur Herstellung anderer Monomere (z. B. Hydroxyethylmethacrylat, kurz HEMA, CAS: 868-77-9).

Die Ester der Methacrylsäure (Veresterung mit Butyl- oder längerkettigen Alkoholen) werden zur Herstellung von Kunststoffen verwendet. Wichtige Polymethacrylate (Polymethylmethacrylate oder Polymethacrylsäureester) sind:

  • Polymethacrylsäuremethylester, Polymethylmethacrylat, kurz PMMA, Plexiglas aus Methacrylsäuremethylester, dem Methylester der Methacrylsäure
  • Polymethacrylsäureethylester, kurz PMAA
  • Polymethacrylsäurepropylester, kurz PMAP
  • Polymethacrylsäureisopropylester
  • Eudragit: Die verschiedenen Varianten von Eudragit sind anionische Copolymere von Methacrylsäure und Methylmethacrylat. Sie sind in Magensaft und in reinem Wasser unlöslich. In neutralen bis alkalischen Medien lösen sie sich durch Salzbildung mit Alkali auf und liefern magensaftresistente und darmsaftlösliche Überzüge. Auf diese Weise kann man Medikamente gut geschützt durch den Magen transportieren.[7]

Sicherheitshinweise

Teilweise eingefrorene Methacrylsäure in einem IBC.

Methacrylsäure kann in einer Runaway Reaction spontan sehr heftig, je nach Bedingungen explosionsartig und unter Zersetzung polymerisieren. Käufliche Methacrylsäure ist daher immer mit einem Polymerisationsinhibitor versetzt. Bei der Lagerung ist darauf zu achten, dass die Säure nicht einfriert (Erstarrungstemperatur 15 °C). Beim Einfrieren verarmt die kristallisierte Methacrylsäure an Inhibitor und Sauerstoff, da diese zum Teil ausfallen, so dass auch nach dem Auftauen noch ein starkes Konzentrationsgefälle des Inhibitors innerhalb des Lagerbehälters auftreten kann. Eingefrorene Methacrylsäure muss daher vorsichtig (Temperaturen über 50 °C sind zu vermeiden), langsam und unter ständiger Durchmischung aufgetaut werden. Dies sollte nur durch sachkundige Personen durchgeführt werden (die Hersteller stellen dazu im Sicherheitsdatenblatt eine Beratungsmöglichkeit, häufig auch eine Notfallhotline zur Verfügung). Ist diese nicht zur Stelle, so kann die kristallisierte Acryl- oder Methacrylsäure unterhalb des Schmelzpunktes, jedoch unter 0 °C gelagert werden. In diesem Zustand ist Methacrylsäure unkritisch. Keinesfalls darf aus teilweise eingefrorenen Behältern flüssige Säure entnommen werden, da dadurch ein Großteil des Inhibitors mit entnommen wird und so beim Wiederaufschmelzen des eingefrorenen Teils der Methacrylsäure nicht mehr zur Verfügung steht.

Siehe auch

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 Eintrag zu CAS-Nr. 79-41-4 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 9.9.2007 (JavaScript erforderlich).
  2. 2,0 2,1 Eintrag aus der CLP-Verordnung zu CAS-Nr. 79-41-4 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich)
  3. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  4. Edward Frankland Annalen, 1865, 136, p. 12
  5. F. Engelhorn et al. Ann., 1880, 200, p. 70.
  6. William Bauer, Jr. "Methacrylic Acid and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. DOI: 10.1002/14356007.a16_441. Article Online Posting Date: June 15, 2000
  7. EUDRAGIT® L 30 D-55 (Evonik)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?