Metallorganische Chemie

Erweiterte Suche

Ferrocen, ein klassischer Vertreter des Verbindungstyps

Metallorganische Chemie in der ursprünglichen Definition ist die Chemie der Verbindungen, in denen ein organischer Rest oder eine organische Verbindung direkt an ein Metallatom gebunden ist. Diese Verbindungen (Metallorganyle oder Metallorganische Verbindungen) werden als metallorganische oder auch organometallische Verbindungen bezeichnet. Heute wird der Begriff aber in der Regel weiter gefasst. Man zählt auch Derivate solcher Elemente zu den metallorganischen Verbindungen, die zwar im elementaren Zustand kein Metall bilden, aber eine niedrige Elektronegativität aufweisen wie zum Beispiel Silicium oder Bor. Besser ist es aber in diesen Fällen von elementorganischen Verbindungen (Elementorganyle) zu sprechen.

Metall- oder Element-Organyle enthalten also mindestens ein Kohlenstoffatom und mindestens ein Metall- oder elektropositives Elementatom (E), die aneinander gebunden sind. Die E-C-Bindung ist dabei eine mehr oder weniger polare kovalente Bindung. Der Organylrest kann dabei entweder über eine Einfach-, Doppel- oder sogar Dreifachbindung an das Element gebunden sein, oder gleich mehrfach mit dem Elementatom verknüpft sein wie im Ferrocen (siehe unten). Nicht zu den metallorganischen Verbindungen zählen hingegen die Carbide: Stahl ist beispielsweise trotz seines Kohlenstoffgehalts eine Legierung und keine metallorganische Verbindung.

Stoffe wie Natriumacetat (H3C–COONa, das Natriumsalz der Essigsäure) zählen ebenfalls trotz des Metallions und des vorhandenen Organylrestes H3C– nicht zu den metallorganischen Verbindungen. Dieses weist nämlich keine direkte Na-C-Bindung auf. Anstelle dessen ist der Acetatrest vorwiegend ionisch über seine Sauerstoffatome an das Natriumion gebunden. Auch Chlorophyll und Hämoglobin sind nach dieser Definition keine metallorganischen Verbindungen, da bei ihnen das zentrale Magnesium- bzw. Eisenatom von Stickstoffatomen koordiniert wird.

Geschichte

William Christopher Zeise

Zu den frühen Entdeckungen in der metallorganischen Chemie zählen Louis Claude Cadets Synthese von mit Kakodyl verwandten Methyl-Arsen-Verbindungen, William Christopher Zeises [1] Platin-Ethylen-Komplex,[2] Edward Franklands Entdeckung des Dimethylzinks und Ludwig Monds Entdeckung des Nickeltetracarbonyls.[3] Bedeutend für die organische Synthese sind die Grignard-Verbindungen, das sind Magnesiumorganyle, die als RMgX abgekürzt werden. Sie wurden von Victor Grignard entdeckt, der dafür zusammen mit Paul Sabatier 1912 den Nobelpreis erhielt.

Im industriellen Maßstab wurden Ziegler-Natta-Katalysatoren, Fischer-Tropsch-Katalysatoren und andere metallorganischen Komplexe in Verfahren wie der Hydroformylierung eingesetzt, mit Kohlenstoffmonoxid, Wasserstoff und Olefinen als Einsatzstoffe und Liganden. Für die Entdeckung der metallorganische Katalysatoren zur Kunststoffherstellung erhielten Karl Ziegler und Giulio Natta 1963 den Nobelpreis.

Im 20. Jahrhundert war das Bleitetraethyl PbEt4 die meistproduzierte metallorganische Verbindung, die zur Erhöhung der Klopffestigkeit dem Benzin zugesetzt wurde. Aufgrund ihrer stark giftigen und katalysatorschädigenden Wirkung fanden solche Zusätze jedoch seit den 1980er Jahren immer weniger Verwendung. Es wurden aber als dessen Ersatz andere metallorganische Verbindungen wie Ferrocen und Tricarbonylmethylcyclopentadienylmangan (MMT) untersucht, jedoch fanden diese keinen großtechnischen Einsatz. Ebenfalls wegen schädlicher Nebenwirkungen umstritten sind die Zinnorganyle, wie z. B. Tributylzinn, die als Stabilisatoren in Kunststoffen und zum Schutz von Schiffsrümpfen Verwendung finden.

Einen wesentlichen Aufschwung für die Metallorganische Chemie, der die Etablierung als eigenständiges Fachgebiet gefördert hat, brachte die Entdeckung des Ferrocens (Dicyclopentadienyleisen, C5H5–Fe–C5H5) 1951. Die Anerkennung und Bedeutung der metallorganischen Chemie als eigenständiges Gebiet wurde durch die Vergabe der Nobelpreise an Ernst Otto Fischer und Geoffrey Wilkinson[4] unterstrichen. Im Jahr 2005 erhielten Yves Chauvin, Robert H. Grubbs und Richard R. Schrock den Nobelpreis für die Metall-katalysierte Alkenmetathese.

Vitamin B12 tritt im menschlichen Körper als metallorganische Verbindung mit einer Cobalt-Kohlenstoff-Bindung auf: ein Cobalt-Atom, das in der Mitte eines Ringsystems (Corrinring) sitzt, ist entweder mit einer Methylgruppe, einem Cyanidion oder mit dem 5'-Kohlenstoff von Desoxyadenosin verknüpft. Diese B12-Stoffgruppe ist somit vermutlich die einzige lebenswichtige, natürlich vorkommende Verbindung, die wegen ihrer direkten Metall-Kohlenstoff-Bindung zu den metallorganischen Verbindungen im engeren Sinne gezählt werden muss.

Einteilung der metallorganischen Chemie

Wichtige Einteilungsschemata für die metallorganischen Verbindungen sind:

  • nach dem Metall, zum Beispiel:
    • Alkalimetallorganyle, z. B. das für Synthesen verwendete Butyllithium
    • Erdalkalimetallorganyle, z. B. Magnesiumorganyle wie die oben erwähnten Grignard-Reagenzien
    • Organyle zur Borgruppe, z. B. Aluminiumorganyle wie DIBAL oder welche, die selbstentzündlich sind und in Flammenwerfern verwendet wurden
    • Münzmetallorganyle, z. B. organische Kupferverbindungen, Carboplatin
  • nach typischen Strukturelementen, zum Beispiel:
    • Sandwich-Komplexe – Sie enthalten ein Metallatom oder -ion eingebettet zwischen zwei aromatischen Ringen. Das Bis-cyclopentadienyl-Eisen oder auch Ferrocen ist die bekannteste Sandwich-Verbindung
    • Carben-Komplexe – Sie zeichnen sich durch eine Metall-Kohlenstoff-Doppelbindung aus.
  • nach der Wertigkeit des Metalls, vor allem bei den Nebengruppenmetallen

Eigenschaften metallorganischer Verbindungen

In der Regel sind Metallorganyle brennbar. Bisweilen sind sie selbstentzündlich (pyrophor) und entflammen spontan an der Luft. Bei den Organylen unedler Metalle verbrennt nicht nur der organische Rest, sondern auch das Metall: Es reagiert zum Metalloxid. Während die Metallatome in einem massiven Metall in eine gut wärmeleitende Umgebung eingebettet sind, sind sie in den metallorganischen Verbindungen atomar fein verteilt, so dass die Reaktion meist heftiger verläuft als bei einem massiven Metall.

Viele Metallorganyle, vor allem die der Alkalimetalle, sind sehr starke Basen – manche zählen zu den stärksten Basen überhaupt. Sie reagieren häufig explosionsartig mit Wasser und sind auch in schwach saurer Umgebung unbeständig.

Luft- oder feuchtigkeitsempfindliche Metallorganyle müssen meist unter Schutzgas oder in einem inerten Lösemittel aufbewahrt und gehandhabt werden (Schlenk-Technik).

Zugehörigkeit des Fachgebiets

Nach der gängigen Definition der Organischen Chemie sind Verbindungen, die Kohlenstoff und Wasserstoff gleichzeitig enthalten, organisch, und demgemäß wären auch die Metallorganische Verbindungen zur Organischen Chemie zu zählen. Andererseits gehört die Chemie der Metalle und Metallionen traditionell zur Anorganischen Chemie. Daher sehen manche eine Einteilung entweder „organisch“ oder „anorganisch“ gerade hier als wenig zweckmäßig an und rechnen die Metallorganische Chemie als Bereich, in dem sich die großen Gebiete überlappen – oder gar als eigenständiges Fachgebiet. Andererseits kann es sinnvoll sein, die Unterscheidung anhand des Blickwinkels festzumachen. Liegt der Schwerpunkt der Forschung auf den Eigenschaften des Metalls bzw. Elements, so handelt es sich um Anorganische Chemie. Wird die metallorganische Verbindung hingegen nur als Hilfsmittel zur Modifikation eines rein organischen Moleküls verwendet, so zählt das zur Organischen Chemie. Nur wenn die Kohlenstoff-Metall-Bindung als solche im Mittelpunkt des Interesses steht, wird man von reiner Metallorganische Chemie sprechen.

Die Einordnung von Substanzen wie die Metallcarbonyle (z. B. Tetracarbonylnickel Ni(CO)4), die an Metallatome gebundenes Kohlenmonoxid enthalten, zeigt ebenfalls die Unzulänglichkeit allzu starrer Einteilungsschemata: Kohlenmonoxid wird wie Kohlendioxid traditionell zu den anorganischen Substanzen gerechnet, was nahelegt, dass auch die Metallcarbonyle anorganisch sind. Andererseits bindet CO in den Carbonylkomplexen über sein Kohlenstoffatom an das Metall, und die chemischen Eigenschaften der Carbonylkomplexe legen es nahe, sie in die Metallorganische Chemie miteinzubeziehen.

Literatur

Einzelnachweise

  1. L. B. Hunt: The First Organometallic Compounds: William Christopher Zeise and his Platinum Complexes. In: Platinum Metals Rev.. 28, Nr. 2, 1984, S. 76–83.
  2. W. C. Zeise: Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen. In: Annalen der Physik. 97, Nr. 4, 1831, S. 497–541. doi:10.1002/andp.18310970402.
  3.  Robert H. Crabtree: The organometallic chemistry of the transition metals. John Wiley and Sons, 2009, ISBN 9780470257623, S. 2 (eingeschränkte Vorschau in der Google Buchsuche).
  4.  Geoffrey Wilkinson: Die lange Suche nach stabilen Alkyl-Übergangsmetallverbindungen (Nobel-Vortrag). In: Angewandte Chemie. 86, Nr. 18, 1974, S. 664-667, doi:10.1002/ange.19740861803.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.06.2021
Supernovae - Astrophysik - Teilchenphysik
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.