Strukturformel
Strukturformel von TRIS
Allgemeines
Name TRIS
Andere Namen
  • Tris(hydroxymethyl)-aminomethan
  • 2-Amino-2-(hydroxymethyl)-propan-1,3-diol
  • Trometamol (INN)
  • Tromethamin
  • Trizma®
Summenformel C4H11NO3
CAS-Nummer 77-86-1
PubChem 6503
ATC-Code

B05BB03 B05XX02

Kurzbeschreibung

farbloser Feststoff[1]

Arzneistoffangaben
Wirkstoffklasse

Acidosetherapeutikum

Verschreibungspflichtig: Ja (teilweise)
Eigenschaften
Molare Masse 121,14 g·mol−1
Aggregatzustand

fest

Dichte

1,35 g·cm−3[1]

Schmelzpunkt

172−173 °C[1]

Siedepunkt

219−220 °C (bei 1,33 kPa)[2]

pKs-Wert

8,2 (bei 20 °C)[3]

Löslichkeit
  • gut in Wasser (800 g·l−1 bei 20 °C)[1] und Ethanol[3]
  • schwerlöslich bis unlöslich in Kohlenwasserstoffen[3]
Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung [4]
07 – Achtung

Achtung

H- und P-Sätze H: 315-319-335
P: 261-​305+351+338 [4]
EU-Gefahrstoffkennzeichnung [5][1]
Reizend
Reizend
(Xi)
R- und S-Sätze R: 36/38
S: 26
LD50

5900 mg·kg−1 (Maus, peroral) [6]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

TRIS ist eine Kurzbezeichnung für Tris(hydroxymethyl)-aminomethan, auch Tromethamin, Trometamol (INN) genannt. Chemisch handelt es sich um ein primäres Amin mit drei alkoholischen Hydroxygruppen.

Synthese

Zunächst werden drei Mol Formaldehyd in einer Aldolreaktion an Nitromethan angelagert. Anschließend wird die Nitrogruppe zur Aminogruppe reduziert.

Chemische Eigenschaften

TRIS wird für biochemische, molekularbiologische, mikrobiologische und pharmazeutische Zwecke als Puffersubstanz verwendet. Bei einem pKs 8,2 (bei 20 °C) besitzt TRIS eine gute Pufferkapazität zwischen pH 7,2–9,0. Es zeigt allerdings eine relativ starke Temperaturabhängigkeit der Säurekonstante (ΔpKs = −0,031 K−1). Das bedeutet: Beim Abkühlen steigt der pH-Wert bzw. sinkt beim Erwärmen.[7]

Gehaltsbestimmung

Die Gehaltsbestimmung von TRIS gelingt als schwache Base im wässrigen Medium mit Methylrot als Indikator gegen Salzsäure. Als Ethanolamin-Derivat ist TRIS mit der Chen-Kao-Reaktion nachweisbar. Dabei wird die Substanz mit Natronlauge und Kupfer(II)-sulfat (CuSO4) versetzt (blauviolette Färbung).

Verwendung

Puffersubstanz in der Biochemie

Die Substanz ist bei vielen Biowissenschaftlern (vor allem Molekularbiologen) so beliebt, da sie auf viele Enzyme nicht inhibierend wirkt und somit für in vitro-Experimente im Allgemeinen besonders geeignet ist. TRIS ist dadurch zu einer Standard-Pufferkomponente für DNA-Lösungen (z.B. TE-Puffer: T steht für TRIS und E für EDTA) geworden. Da TRIS eine reaktive primäre Aminogruppe aufweist, ist der Puffer für einige chemische Anwendungen nicht geeignet.

Hilfsstoff in der Pharmazie

Trometamol wird in verschiedenen pharmazeutischen Darreichungsformen wie etwa Injektions- und Infusionslösungen, Augentropfen, Cremes und Gelen als Hilfsstoff zur Stabilisierung eingesetzt. Es wirkt alkalisierend und puffernd.

Arzneistoff

In Form seines Hydrochlorids wird Trometamol als Arzneistoff zur Behandlung der metabolischen Azidose angewendet, ferner zur Alkalisierung des Harns bei Vergiftungen mit schwach sauren Stoffen wie etwa Barbituraten. Es wird intravenös verabreicht. Als organische Base bildet Trometamol mit Mineralsäuren Salze. Im Blut gelöstes Kohlenstoffdioxid (CO2) kann auf diese Weise neutralisiert werden. Beim physiologischen pH-Wert von 7,4 liegen ca. 70 % des Trometamols im Blutplasma in der ionisierten (= protonierten) Form vor. Nichtionisiertes Trometamol durchdringt die Zellmembranen und ist auch intrazellulär als Puffer wirksam; dies bewirkt Kaliumverschiebungen vom Intra- in den Extrazellulärraum. Es kann initial zu Hyperkaliämie und sekundärer Hypokaliämie kommen. Trometamolhydrochlorid gibt es als Infusionslösung oder Infusionslösungskonzentrat. Trometamol ist in Mengen über 1 g je abgeteilter Arzneiform verschreibungspflichtig.

Handelsnamen

Monopräparate

THAM (D), TRIS (D), sowie ein Generikum (D)

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 Datenblatt TRIS bei Carl Roth, abgerufen am 14. Dezember 2010.
  2. Römpp CD 2006, Georg Thieme Verlag 2006.
  3. 3,0 3,1 3,2  Thieme Chemistry (Hrsg.): RÖMPP Online - Version 3.5. Georg Thieme Verlag KG, Stuttgart 2009.
  4. 4,0 4,1 Datenblatt Tris(hydroxymethyl)aminomethane bei Sigma-Aldrich, abgerufen am 23. April 2011.
  5. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  6. TRIS bei ChemIDplus
  7. http://www.neb.com/nebecomm/tech_reference/general_data/tris_buffer.asp Tabelle mit Werten bei verschiedenen Temperaturen.

Siehe auch

Newsmeldungen wie "TRIS" auf cosmos-indirekt.de

11.01.2021
Quantenoptik | Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
14.09.2020
Elektrodynamik
Neuer magnetoelektrischer Effekt entdeckt
Auf sehr ungewöhnliche Weise sind elektrische und magnetische Eigenschaften eines bestimmten Kristalls miteinander verbunden – an der TU Wien wurde das Phänomen entdeckt und erklärt.
13.02.2020
Forschenden gelang es erstmals, das elektrische Feld eines Attosekunden-Impulses zeitlich zu gestalten
Chemische Reaktionen werden auf ihrer grundlegendsten Ebene von ihrer jeweiligen elektronischen Struktur und Dynamik bestimmt.
13.01.2020
Untrennbarkeit von elektrischer Ladung und Spin: Scheidung in einer Dimension
Wissenschaftler am MPQ haben eine 50 Jahre alte Vermutung über die (Un)trennbarkeit von Ladung und Spin mittels der Verwendung eines Quantensimulator experimentell bestätigt.
13.12.2019
Wie wird aus magnetischem Strom elektrischer Strom?
Internationales Physiker-Team beleuchtet Mechanismen, durch die sich magnetische in elektrische Ströme in Schichtstrukturen umwandeln lassen.
25.09.2019
Hocheffiziente magnetische Computer: Prozessor aus der Petrischale
Ein geeigneter Nährboden, etwas Wärme und schon wächst der Computer von ganz allein: Ein Prozessor aus speziellen Bakterien könnte bei gleicher Größe erheblich mehr Daten verarbeiten als sein Pendant aus Silizium.
13.06.2019
Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome
Ein Forscherteam aus Jülich hat in Kooperation mit der Universität Magdeburg eine neue Methode entwickelt, mit der sich die elektrischen Potenziale einer Probe atomgenau vermessen lassen.
29.01.2019
Festkörperphysik
Forscher der TUDresden entschlüsseln elektrische Leitfähigkeit von dotierten organischen Halbleiter
Wissenschaftler des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden haben in Kooperation mit der Stanford University (USA) und dem Institute for Molecular Science in Okazaki (Japan) wesentliche Parameter identifiziert, die die elektrische Leitfähigkeit in dotierten organischen Leitern beeinflussen.
26.11.2018
Elektrodynamik | Festkörperphysik
Thermoelektrische Kühlung wird fit für die Mikrotechnologie
Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung haben die Herstellung thermoelektrischer Bauelemente deutlich verbessert, so dass sie schnell, zuverlässig und in Mikrochips integrierbar sind.
26.06.2018
Festkörperphysik | Quantenoptik
Asymmetrische Nano-Antennen liefern Femtosekunden-Pulse für Optoelektronik
Einem Team unter Leitung der TUM-Physiker Alexander Holleitner und Reinhard Kienberger ist es erstmals gelungen, mit Hilfe nur wenige Nanometer großer Metallantennen ultrakurze, elektrische Pulse auf einem Chip zu erzeugen, diese dann einige Millimeter weiter wieder kontrolliert auszulesen.
22.06.2018
Quantenphysik
Der photoelektrische Effekt in Stereo
Beim photoelektrischen Effekt löst ein Photon ein Elektron aus einem Material heraus.
06.05.2018
Elektrodynamik
„Elektrisierende“ Chemie unter der Lupe
Die Chemie hat eine „elektrisierende“ Zukunft: Mit der steigenden Verfügbarkeit elektrischer Energie aus erneuerbaren Quellen wird es in der Zukunft möglich sein, viele chemische Prozesse durch elektrischen Strom anzutreiben.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.01.2022
Satelliten | Raumfahrt | Astrophysik
James Webb Weltraumteleskop am Ziel
Die Wissenschaft kann möglicherweise bald erforschen, wie das Universum seinen Anfang nahm, denn das neue Weltraumteleskop James Webb hat seine Endposition erreicht.
17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.