Magnesit

Erweiterte Suche

Magnesit
Magnesite.jpg
Magnesit - Einkristall (9,7 • 7,1 • 6 cm) aus Serra das Éguas, Brasilien
Chemische Formel

Mg[CO3]

Mineralklasse Carbonate und Nitrate (ehemals Carbonate, Nitrate und Borate)
5.AB.05 (8. Auflage: V/B.02) nach Strunz
14.01.01.02 nach Dana
Kristallsystem trigonal
Kristallklasse; Symbol nach Hermann-Mauguin ditrigonal-skalenoedrisch; 3 1 2/m[1]
Farbe farblos, weiß, gelblich, bräunlich bis schwarz
Strichfarbe weiß
Mohshärte 4 bis 4,5
Dichte (g/cm3) 3,1
Glanz Glasglanz, matt
Transparenz durchsichtig bis undurchsichtig
Bruch muschelig
Spaltbarkeit vollkommen
Habitus rhomboedrische, prismatische Kristalle; erdige, massige Aggregate
Kristalloptik
Brechungsindex ω = 1,700 ; ε = 1,509[2]
Doppelbrechung
(optischer Charakter)
δ = 0,191[2] ; einachsig negativ

Magnesit ist ein häufig vorkommendes Mineral aus der Mineralklasse der „Carbonate und Nitrate“. Er kristallisiert im trigonalen Kristallsystem mit der chemischen Zusammensetzung Mg[CO3][3] und entwickelt rhomboedrische, prismatische Kristalle, aber auch erdige, massige Aggregate in weißer, gelblicher, bräunlicher bis schwarzer Farbe. Auch farblose Kristalle sind bekannt.

Besondere Eigenschaften

Magnesit ist, wie die meisten Carbonate, in Säuren unter CO2-Abgabe löslich. Im Vergleich zum Calcit löst er sich allerdings nur in Pulverform in warmen Säuren.[4]

Etymologie und Geschichte

Magnesit wurde nach seinem metallischen Bestandteil Magnesium benannt. Erstmals gefunden und beschrieben wurde es 1808 durch Karsten.

Klassifikation

In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Magnesit noch zur gemeinsamen Mineralklasse der „Carbonate, Nitrate und Borate“ und dort zur Abteilung der „Wasserfreien Carbonate [CO3]2- ohne fremde Anionen“, wo er zusammen mit Calcit, Gaspéit, Otavit, Rhodochrosit, Siderit, Smithsonit, Sphärocobaltit und Vaterit die „Calcit-Gruppe“ mit der System-Nr. V/B.02 bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz’schen Mineralsystematik ordnet den Magnesit in die Klasse der Carbonate und Nitrate (die Borate bilden hier eine eigene Klasse) und dort ebenfalls in die Abteilung der „Carbonate ohne weitere Anionen, ohne H2O“ ein. Diese ist allerdings weiter unterteilt nach den Elementgruppen, deren Vertreter in den Mineralen enthalten sind, so dass Magnesit entsprechend seiner Zusammensetzung in der Unterabteilung „Erdalkali- (und andere M2+) Carbonate“ zu finden ist, wo es ebenfalls in der „Calcit-Gruppe“ mit der System-Nr. 5.AB.05 einsortiert ist.

Die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Magnesit wie die veraltete Strunz’sche Systematik in die gemeinsame Klasse der „Carbonate, Nitrate und Borate“ und dort in die Abteilung der „Wasserfreien Carbonate“ ein. Hier ist er zusammen mit Calcit, Siderit, Rhodochrosit, Sphärocobaltit, Smithsonit, Otavit und Gaspéit in der „Calcitgruppe (Trigonal: R3c)“ mit der System-Nr. 14.01.01 innerhalb der Unterabteilung „Wasserfreie Carbonate mit einfacher Formel A+CO3“ zu finden.

Modifikationen und Varietäten

Pinolit- bzw. „Eisblumen“-Magnesit aus den Tauern (Österreich)

Einzige bisher bekannte „echte“ Varietät ist der eisenhaltige Breunnerit oder auch Mesitinspat.[3]

Allgemein werden Magnesite jedoch gern entsprechend ihrer Kristallentwicklung in die „Varietäten“ Kristallmagnesit (auch Spat- oder Pinolitmagnesit, veraltet auch Pinolenstein) und Dichter bzw. Massiger Magnesit (auch Gelmagnesit) eingeteilt.

Bildung und Fundorte

Magnesit bildet sich überwiegend hydrothermal, metasomatisch oder metamorph. Gelegentlich findet er sich aber auch in magmatischen Gesteinen. Spat- bzw. Pinolitmagnesite bilden sich vorwiegend in Talk- und Chloritschiefern, sowie in Dolomitgesteinen. Dichter Magnesit, der zunächst ähnlich dem Opal von gelartiger Beschaffenheit ist, später aber in eine mikrokristalline Struktur übergeht, findet sich dagegen eher in Serpentingesteinen.

Bis zu einem Meter große Kristalle wurden schon im Dolomitgestein in Brumado und Bahía (Brasilien) gefunden. Meist liegen die Kristallgrößen jedoch im Zentimeterbereich.

Weitere Fundorte sind unter anderem Nangarhar in Afghanistan; Zentral- und Ost-Ägypten; Biskra in Algerien; Princess-Elizabeth-Land in der Ostantarktis; Salta in Argentinien; Gegharkunik in Armenien; Äthiopien; mehrere Regionen in Australien; Cochabamba in Bolivien; die Regionen Antofagasta und Atacama in Chile; mehrere Provinzen in der Volksrepublik China; Baden-Württemberg, Bayern, Hessen, Rheinland-Pfalz, Sachsen-Anhalt, Sachsen und Thüringen in Deutschland; mehrere Regionen in Frankreich; Finnland; einige Provinzen in Griechenland; Kitaa in Grönland; Java (Insel) in Indonesion; verschiedene Regionen in Italien; Honshū und Shikoku in Japan; mehrere Regionen in Kanada; Kasachstan; Katanga in der Demokratischen Republik Kongo; Korea; Madagaskar; Mexiko; Nepal; mehrere Regionen in Norwegen; viele Regionen in Österreich; Eugui in Spanien; Slowakei; Böhmen und Mähren in Tschechien; Borsod-Abaúj-Zemplén und Pest in Ungarn; sowie viele Regionen der USA. [5]

Kristallstruktur

Magnesit kristallisiert isotyp mit Calcit im trigonalen Kristallsystem in der Raumgruppe R3c mit den Gitterparametern a = 4,633 Å und c = 15,15 Å sowie sechs Formeleinheiten pro Elementarzelle.[1]

Verwendung

massiger Magnesit als Roh- und Trommelstein

Rohstoff

Aufgrund seiner hohen Temperaturbeständigkeit ist Magnesit ein wichtiger Rohstoff zur Herstellung von feuerfesten Ziegeln, mit denen unter anderem Hochöfen, Konverter zur Stahlerzeugung und andere Schmelzöfen ausgekleidet werden. Die Ziegel werden bei etwa 1800 °C gebrannt, wodurch kristallines Magnesiumoxid (MgO) entsteht.[6] Zusätzlich besitzen diese Ziegel gute Wärmespeichereigenschaften, so dass sie als Speicherkerne unter anderem in Nachtspeicherheizungen und Elektrokaminen verwendet werden.[7]

Daneben verwendet man kaustisch gebrannten Magnesit als Bindemittel für die Herstellung von Holzwolle-Leichtbauplatten.

Schmuckstein

Magnesit ist mit einer Mohshärte von 4 bis 4,5 für die kommerzielle Verwendung als Schmuckstein eigentlich zu weich. Unter Sammlern hat ein klarer, facettierter Magnesit dennoch einen gewissen Wert.[8]

Das Mineral dient allerdings ebenso wie der vom Aussehen ähnliche Howlith als Grundlage für Türkis. Blau gefärbt und zum Schutz vor Beschädigungen stabilisiert kann vor allem der begehrte und teure Matrix-Türkis nachgeahmt werden, der oft unter dem Namen Turkenit in den Handel kommt.[9]

Siehe auch

Einzelnachweise

  1. 1,0 1,1 Webmineral - Magnesite (engl.)
  2. 2,0 2,1 MinDat - Magnesite (engl.)
  3. 3,0 3,1 Stefan Weiß: Das große Lapis Mineralienverzeichnis. 4. Auflage. Christian Weise Verlag, München 2002, ISBN 3-921656-17-6
  4.  Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Ferdinand Enke Verlag, Stuttgart 1978, ISBN 3-432-82986-8, S. 569.
  5. MinDat - Localities for Magnesite (engl.)
  6. Martin Okrusch, Siegfried Matthes: Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 7. Auflage. Springer Verlag, Berlin, Heidelberg, New York 2005, ISBN 3-540-23812-3 (S. 63-64)
  7. Elektrokamine als Tag oder Nachtstromheizung
  8. Walter Schumann: Edelsteine und Schmucksteine. 13. Auflage. BLV Verlags GmbH, 1976/1989, ISBN 3-405-16332-3 (S. 230)
  9. Bernhard Bruder: Geschönte Steine. Neue Erde Verlag, 1998, ISBN 3-89060-025-5 (S. 78-79)

Literatur

  •  Petr Korbel, Milan Novák: Mineralien Enzyklopädie. Nebel Verlag GmbH, Eggolsheim 2002, ISBN 3-89555-076-0, S. 113.
  •  Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Ferdinand Enke Verlag, Stuttgart 1978, ISBN 3-432-82986-8, S. 569.
  •  Martin Okrusch, Siegfried Matthes: Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 7. Auflage. Springer Verlag, Berlin, Heidelberg, New York 2005, ISBN 3-540-23812-3, S. 63.

Weblinks

 Commons: Magnesit – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference
  • Mineralienatlas:Magnesit (Wiki)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

27.07.2021
Monde - Thermodynamik
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
27.07.2021
Quantenphysik - Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
27.07.2021
Klassische Mechanik - Physikdidaktik
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.