Strukturformel
Struktur von Hexogen
Allgemeines
Name Hexogen
Andere Namen
  • Perhydro-1,3,5-trinitro-1,3,5-triazin
  • Hexahydro-1,3,5-trinitro-1,3,5-triazin
  • Cyclotrimethylentrinitramin
  • Cyclonit
  • RDX
  • T4
Summenformel C3H6N6O6
CAS-Nummer 121-82-4
PubChem 8490
Eigenschaften
Molare Masse 222,12 g·mol−1
Aggregatzustand

fest

Dichte

1,82 g·cm−3 (20 °C) [1]

Schmelzpunkt

205–206 °C (Zersetzung) [1]

Löslichkeit

schlecht in Wasser[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Hexogen (auch Cyclotrimethylentrinitramin, Cyclonit, T4 und RDX (Research Department Explosive / Royal Demolition Explosive)) ist ein hochbrisanter, giftiger Sprengstoff aus der Gruppe der Nitramine, der während des Zweiten Weltkriegs in großen Mengen hergestellt wurde und immer noch eingesetzt wird. Der systematische Name von Hexogen lautet 1,3,5-Trinitro-1,3,5-triazinan.

Geschichte

Hexogen wurde 1898 von dem Berliner Chemiker und pharmazeutischen Unternehmer Georg Friedrich Henning als Explosivstoff zur technischen Verwertung und als Ausgangsmaterial für pharmazeutische Präparate erstmals hergestellt und im deutschen Reichspatent unter der Nr. 104280 vom 15. Juli 1898 beschrieben. Im Jahre 1920 erforschte man im Militärversuchsamt in Berlin die Substanz näher und nannte sie nun Hexogen.

Die Herstellungsverfahren waren anfangs unwirtschaftlich. Erst in den 1930er-Jahren wurden vier neue Verfahren in Deutschland entwickelt und Hexogen unter verschiedenen Decknamen wie K-, SH-, E- oder W-Salz im Zweiten Weltkrieg angewendet. Analoge Verfahren wurden auch auf alliierter Seite entwickelt, z. B. das Bachmann-Verfahren in den USA. Hexogen war auch Bestandteil eines der ersten Plastiksprengstoffe, der von Deutschland unter diesem Namen im Zweiten Weltkrieg angewendet wurde und aus 88 % Hexogen und 12 % Vaseline bestand.

Heutzutage werden unterschiedliche Kombinationen verwendet, so z. B. Torpex. Torpex besteht aus 40 % Hexogen, 42 % TNT und 18 % Aluminium.

Hexogen ist chemisch und thermisch sehr stabil und ist auch heute noch einer der brisantesten Sprengstoffe mit hoher Arbeitsleistung. Die Substanz ist der wichtigste praktisch angewendete hochbrisante militärische Explosivstoff.

Gewinnung und Darstellung

Beim S-H-Verfahren gewinnt man Hexogen durch „Nitrolyse“ aus Hexamethylentetramin (Urotropin, Hexamin) und hochkonzentrierter Salpetersäure (98–99 %). Aufgrund der hohen Explosionsgefahr ist die Herstellung an die Einhaltung genauer Synthesevorschriften gebunden. Technische Verfahren arbeiten modifiziert unter Verwendung von Zusatzstoffen, die Wasser binden (Essigsäureanhydrid im KA- oder Bachmann-Verfahren) und zusätzlich Ammoniumionen liefern (Ammoniumnitrat im K-Verfahren). Hexamethylentetramin (Urotropin) ist ein Kondensationsprodukt aus Ammoniak und Formaldehyd, welches sich beim gemeinsamen Eindampfen der wässrigen, leicht alkalischen Lösungen bildet. Als Nebenprodukt dieser Synthese bilden sich stets einige Prozente Octogen, welches durch Zusätze von Bortrifluorid bevorzugt gebildet werden kann. Beim E-Verfahren erfolgt die Umsetzung von Paraformaldehyd und Ammoniumnitrat in Essigsäureanhydrid.[4]

Synthesis hexogen.svg

Die Herstellung und Handhabung von Hexogen hat in der Vergangenheit bereits zu Umwelt- und Trinkwasservergiftungen geführt.

Eigenschaften

Das Hexogen-Molekül hat eine ringförmige Struktur mit drei Stickstoffatomen (Triazinanring), es ist ein gesättigter Heterocyclus.

Die im Hexogen vorhandenen Nitrogruppen (-NO2) treten in vielen Sprengstoffen auf, zum Beispiel auch im TNT oder - als Salpetersäureestergruppe (-O-NO2) - in der Schießbaumwolle. Da die Nitrogruppe an einen Aminstickstoff (dieser enthält ein freies Elektronenpaar) gebunden ist, wird die Struktur stabilisiert (capto-datives Strukturelement). Bei Nitraten ist die Nitrogruppe dagegen an ein Sauerstoffatom gebunden, welcher zwar 2 freie Elektronenpaare besitzt, aber deutlich elektronegativer als der Stickstoff ist. Entsprechend ist die Temperaturstabilität von Nitraminen wesentlich größer als jene vergleichbarer Nitrate.

Physikalische Eigenschaften

Hexogen ist ein farbloser kristalliner Feststoff, der bei 204 °C mit einer Schmelzwärme von 37,66 kJmol−1 schmilzt.[5] Mit einer positiven Bildungsenthalpie von 299,7 kJ·kg−1 bzw. 66,5 kJ·mol−1 handelt es sich um eine endotherme Verbindung.[6][4] Die Kristallstruktur von Hexogen ist orthorhombisch, Raumgruppe Pbca; a=13,22 Å ; b=11,61 Å ; c=10,75 Å ; Z=8.

Die Härte nach Mohs von Hexogen liegt bei 2,5.

Explosionskenngrößen

Hexogen zeigt aufgrund seiner hohen Dichte und hohen Detonationsgeschwindigkeit eine hohe Bilanzleistung und zählt zu den leistungsstarken, hochbrisanten und zudem relativ unempfindlichen sowie chemisch sehr stabilen Sprengmitteln.[4] Wichtige Explosionskennzahlen sind:

Verwendung

Hexogen gilt als besonders starker und hochbrisanter Explosivstoff und ist Bestandteil vieler verbreiteter Sprengstoffarten, zum Beispiel C4 und Torpex.

Hexogen ist in reinem Zustand hochexplosiv. Damit es als Sprengstoff militärisch genutzt werden kann, wird es mit Plastifizierern wie Polyethylen, Wachs, Knetmasse, Vaseline oder Ähnlichem zu den Plastiksprengstoffen A2, A3, B2, B3, B4, C2, C3 und dem am weitesten verbreiteten C4 vermischt. Außerdem bilden die Sprengstoffe Hexogen und PETN zusammen mit einem Plastifizierer den ebenfalls bekannten Plastiksprengstoff Semtex. Wie fast alle militärisch verwendeten Sprengstoffe sind alle diese Plastiksprengstoffe nicht mehr gegen Schlag, Flamme und Reibung empfindlich. Um diese Plastiksprengstoffe zur Explosion zu bringen, muss eine Initialzündung mit einer Sprengkapsel erfolgen. Mit bestimmten anderen chemischen Verbindungen kann Hexogen jedoch auch direkt zur Explosion kommen (siehe Sicherheitshinweise).

Früher fand Hexogen in Brotteig eingeknetet Verwendung als Rodentizid. Diese Verwendung ist heute aufgrund der strengeren Sprengstoffgesetze nicht mehr gebräuchlich.

Sicherheitshinweise

Hexogen ist ein hochexplosiver Stoff. Oberhalb seines Schmelzpunktes von 200 °C zersetzt es sich unter Bildung von Stickstoffoxiden. Zusammen mit Quecksilberfulminat als klassischem Initialzünder besteht Explosionsgefahr.

Literatur

  • J. Gartz: Kulturgeschichte der Explosivstoffe. E.S.Mittler & Sohn, Hamburg, März 2007.

Weblinks

Einzelnachweise

  1. 1,0 1,1 Eintrag zu Perhydro-1,3,5-trinitro-1,3,5-triazin in der GESTIS-Stoffdatenbank des IFA, abgerufen am 9. Juli 2008 (JavaScript erforderlich)
  2.  Thieme Chemistry (Hrsg.): RÖMPP Online - Version 3.5. Georg Thieme Verlag KG, Stuttgart 2009.
  3. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  4. 4,00 4,01 4,02 4,03 4,04 4,05 4,06 4,07 4,08 4,09 4,10 4,11 Köhler, J.; Meyer, R.; Homburg, A.: Explosivstoffe, zehnte, vollständig überarbeitete Auflage,, Wiley-VCH, Weinheim 2008, ISBN 978-3-527-32009-7.
  5. E. S. Domalski, E. D. Hearing: Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, in : J. Phys. Chem. Ref. Data 25 (1996) 1–525; doi:10.1063/1.555985.
  6. Delepine, M.; Badoche, M.: Thermochimie de l'aldehyde formique, de l'hexamethylene-tetramine et de ses derive in C. R. Acad. Sci. Paris 214 (1942) 777-780.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

27.07.2021
Monde - Thermodynamik
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
27.07.2021
Quantenphysik - Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
27.07.2021
Klassische Mechanik - Physikdidaktik
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.