Diphosgen

Erweiterte Suche

Strukturformel
Struktur von Diphosgen
Kristallsystem

monoklin[1]

Raumgruppe

P21/n[1]

Gitterkonstanten

a=5,5578(5) Å, b=14,2895(12) Å, c=8,6246(7) Å, β=102,443(2)°, Z=4[1]

Allgemeines
Name Diphosgen
Andere Namen
  • Chlorameisensäuretrichlormethylester
  • Trichlormethylchlorformiat
  • Trichlormethylchlorkohlensäureester
  • Perstoff
  • Palit
Summenformel C2Cl4O2
CAS-Nummer 503-38-8
Kurzbeschreibung

farblose, stechend riechende Flüssigkeit[2]

Eigenschaften
Molare Masse 197,85 g·mol−1
Aggregatzustand

flüssig

Dichte

1,64 g·cm−3 (20 °C)[2]

Schmelzpunkt

−57 °C[2]

Siedepunkt

127,5 °C[2]

Dampfdruck

13,73 hPa (20 °C)[2]

Löslichkeit
Brechungsindex

1.4584[4]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [5]
05 – Ätzend 06 – Giftig oder sehr giftig

Gefahr

H- und P-Sätze H: 300-314-330
P: 260-​264-​280-​284-​301+310-​305+351+338Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [5]
EU-Gefahrstoffkennzeichnung [6][2]
Sehr giftig
Sehr giftig
(T+)
R- und S-Sätze R: 26-34
S: 9-26-28-36/37/39-45
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Diphosgen ist eine chlorhaltige, giftige chemische Verbindung. Sie wurde wie Phosgen im Ersten Weltkrieg als Lungenkampfstoff verwendet. Es wird auch als Perstoff bezeichnet.

Geschichte

Diphosgen wurde zum ersten Mal am 23. Juni 1916 von der Deutschen Armee bei Verdun im Raum Fort Souville und Fort Tavannes an der Westfront als Grünkreuzkampfstoff in Granatfüllungen eingesetzt.

Herstellung

Eine offensichtliche Synthese ist die Chlorierung von Ameisensäuremethylester unter UV-Licht:

Synthese von Diphosgen

Wegen der hohen Flüchtigkeit des Methylformiats und dessen hoher, mitunter explosiver Reaktionsfreudigkeit wird zumindest im Labor die radikalische Chlorierung von Chlorameisensäuremethylester vorgezogen. Dieser ist wohlfeil erhältlich und wird aus Phosgen und Methanol gewonnen:

Synthese von Diphosgen

Chemische Eigenschaften

Diphosgen zersetzt sich beim Erwärmen in 2 Moleküle Phosgen (Thermolyse).

Thermolyse on Diphosgen

Verwendung

Diphosgen wird als weniger gefährlicher Ersatz für Phosgen z. B. bei der Herstellung von Carbonaten, Isocyanaten und Isocyaniden verwendet. Außerdem dient es zur Herstellung von Phosgen im Labor. Militärisch wurde es als Kampfstoff verwendet (siehe auch Grünkreuz).

Biologische Bedeutung

Symptome der Vergiftung mit Phosgen oder Diphosgen: Stunden nach dem Einatmen quälender Husten, bräunlicher Auswurf (Blutbeimischung), Blauanlaufen der Haut (Zyanose), Lungenödem (Ansammlung von Flüssigkeit in der Lunge). Unbehandelt endet die Vergiftung mit Phosgen oder Diphosgen in qualvollem Ersticken.

Sicherheitshinweise

Diphosgen ist hochgiftig. Die LD100 beträgt 6 mg/l (Einwirkzeit 1 Minute), der LCT50 3200 mg x min/m³ und der ICT50 1600 mg x min/m³.

Nachweis

Das entstehende Phosgen kann mit Prüfröhrchen nachgewiesen werden.

Siehe auch

Liste chemischer Kampfstoffe

Einzelnachweise

  1. 1,0 1,1 1,2  Valeria B. Arce, Carlos O. Della Védova, Anthony J. Downs, Simon Parsons, Rosana M. Romano: Trichloromethyl Chloroformate (“Diphosgene”), ClC(O)OCCl3:  Structure and Conformational Properties in the Gaseous and Condensed Phases. In: Journal of organic chemistry. 71, Nr. 9, 2006, S. 3423–3428, doi:10.1021/jo052260a.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 Eintrag zu Diphosgen in der GESTIS-Stoffdatenbank des IFA, abgerufen am 9. Dezember 2007 (JavaScript erforderlich)
  3. 3,0 3,1  Thieme Chemistry (Hrsg.): RÖMPP Online - Version 3.5. Georg Thieme Verlag KG, Stuttgart 2009.
  4.  H. Laato: In: Suomen kemistilehti B. 41, 1968, ISSN 0371-4101, S. 347.
  5. 5,0 5,1 Datenblatt Trichloromethyl chloroformate bei Sigma-Aldrich, abgerufen am 28. März 2011.
  6. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.11.2021
Sonnensysteme | Exoplaneten
Wenig Kollisionsgefahr im Planetensystem TRAPPIST-1
Sieben erdgrosse Planeten umkreisen den Stern TRAPPIST-1 in nahezu perfekter Harmonie.
23.11.2021
Optik
„Maßgeschneidertes“ Licht
Ein Forscherteam entwickelt erstmals ein Lichtfeld, welches die Struktur des vierdimensionalen Raums widerspiegelt.
15.11.2021
Schwarze Löcher
Woher kommt das Gold?
Wie werden chemische Elemente in unserem Universum produziert?
08.11.2021
Teilchenphysik
Neue Einblicke in die Struktur des Neutrons
Sämtliche bekannte Atomkerne und damit fast die gesamte sichtbare Materie bestehen aus Protonen und Neutronen – und doch sind viele Eigenschaften dieser allgegenwärtigen Bausteine der Natur noch nicht verstanden.
08.11.2021
Physikdidaktik | Strömungsmechanik
Warum Teekannen immer tropfen
Strömungsmechanische Analysen der TU Wien beantworten eine alte Frage: Wie kommt es zum sogenannten „Teapot-Effekt“?
05.11.2021
Teilchenphysik | Thermodynamik
Elektronen-Familie erzeugt bisher unbekannten Aggregatzustand
Ein internationales Forschungsteam des Exzellenzclusters ct.
04.11.2021
Galaxien | Schwarze Löcher
Jet der Riesengalaxie M87
In verschiedenen Wellenlängen lässt sich ein gigantischer Teilchenstrahl beobachten, der von der Riesengalaxie M87 ausgestoßen wird.
04.11.2021
Galaxien
Am weitesten entfernter Nachweis von Fluor in sternbildender Galaxie
Eine neue Entdeckung gibt Aufschluss darüber, wie Fluor – ein Element, das in unseren Knochen und Zähnen als Fluorid vorkommt – im Universum entsteht.
02.11.2021
Monde | Kometen und Asteroiden
Planetologen erforschen schweres Bombardement des Mondes vor 3,9 Milliarden Jahren
Der Mond war vor 3,9 Milliarden Jahren einem schweren Bombardement mit Asteroiden ausgesetzt.
29.11.2021
Optik | Quantenoptik
Nur durch Billiardstel Sekunden getrennt
Ultrakurze Lichtblitze dauern weniger als eine Billiardstel Sekunde und haben eine wachsende technologische Bedeutung.