Natriumthiocyanat

Erweiterte Suche

Strukturformel
Natriumion Thiocyanation
Allgemeines
Name Natriumthiocyanat
Andere Namen
  • Natriumrhodanid
  • Natriumsulfocyanid
Summenformel NaSCN
CAS-Nummer 540-72-7
Kurzbeschreibung

farbloser Feststoff [1]

Eigenschaften
Molare Masse 81,07 g·mol−1
Aggregatzustand

fest

Dichte

1,73 g·cm−3 [1]

Schmelzpunkt

287 °C [1]

Dampfdruck

<1 hPa (20 °C) [2]

Löslichkeit

löslich in Wasser: 1250 g·l−1 (20 °C) [2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
07 – Achtung

Achtung

H- und P-Sätze H: 332-312-302-412
EUH: 032
P: 273-​280 [1]
EU-Gefahrstoffkennzeichnung [4] aus EU-Verordnung (EG) 1272/2008 (CLP) [3]
Gesundheitsschädlich
Gesundheits-
schädlich
(Xn)
R- und S-Sätze R: 20/21/22-32-52/53
S: (2)-13-61
LD50

764 mg·kg−1 (Ratte, oral) [2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Natriumthiocyanat ist eine gesundheitsschädliche chemische Verbindung mit der Formel NaSCN, die bei Raumtemperatur als weißer, hygroskopischer Feststoff vorliegt. Es wird in vielen Synthesen verwendet, die das Thiocyanation (Rhodanid) SCN benötigen.

Gewinnung und Darstellung

Die Darstellung von Natriumthiocyanat wird mit Natriumcyanid und elementarem Schwefel durchgeführt:

$ \mathrm{NaCN + S \longrightarrow NaSCN} $

Eigenschaften

Kristalle von NaSCN sind orthorhombisch, wobei jedes Na+ von drei Schwefel- und drei Stickstoffliganden umgeben ist.[5] Durch starke Säuren wird aus NaSCN Isothiocyansäure (S=C=NH, pKa = −1,28) freigesetzt.[6]

Verwendung

Verwendung findet NaSCN bei der Umwandlung von Halogenalkanen in entsprechende Alkylthiocyanate, wobei auch Kaliumthiocyanat und seltener Ammoniumthiocyanat eingesetzt werden können. Beispiele für derartige Synthesen sind die Herstellung von Isopropylthiocyanat aus Isopropylbromid mit NaSCN in heißem Ethanol.[7] Zur Herstellung von Thioharnstoff wird aus NaSCN das instabile HSCN in situ erzeugt, welches dann mit organischen Aminen Thioharnstoffverbindungen bildet.[8] Wie die beiden anderen erwähnten Thiocyanate (von K+ und NH4+) wird NaSCN in der Phototechnik (Sensibilisierung), Galvanotechnik (Glanzbildner für Kupferbäder), Metallurgie (Extraktion von Zirconium, Hafnium und Lanthanoiden), Textilindustrie (Färbehilfsmittel, Bedrucken), chemischen Industrie und Analytik (Produktion von Herbiziden und Fungiziden, Fe3+-Nachweis) verwendet.

Gefahrenhinweise

Natriumthiocyanat ist als mindergiftig eingestuft, d. h. gesundheitsschädlich beim Verschlucken und bei Berührung mit der Haut, allerdings entwickelt es bei Kontakt mit Säure sehr giftige Gase. Das krebserzeugende und wassergefährdende Potential von NaSCN ist als relativ gering zu bewerten.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Eintrag zu Natriumthiocyanat in der GESTIS-Stoffdatenbank des IFA, abgerufen am 7. Feb. 2008 (JavaScript erforderlich).
  2. 2,0 2,1 2,2 Datenblatt Natriumthiocyanat bei Merck, abgerufen am 10. August 2010.
  3. 3,0 3,1 Eintrag aus der CLP-Verordnung zu CAS-Nr. 540-72-7 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich)
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. P. H. van Rooyen, J. C. A. Boeyens: Sodium thiocyanate. In: Acta Crystallographica. 1975, B31, S. 2933-2934.
  6. Y. Chiang, A.J. Kresge: Determination of the Acidity Constant of Isothiocyanic Acid in Aqueous Solution. In: Canadian Journal of Chemistry. 2000, 78, S. 1627-1628.
  7. R. L. Shriner: Isopropyl Thiocyanate. In: Organic Syntheses. 1943, 2, S. 366 (pdf)
  8. C. F. H. Allen, J. VanAllan: 2-Amino-6-Methylbenzothiazole. In: Organic Syntheses. 1955, 3, S. 76. (pdf).

Literatur

  • Holleman, Wiberg: Lehrbuch der Anorganischen Chemie. 101. Auflage. Berlin, New York: De Gruyter 1995, ISBN 3-11-01-2641-9.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?