Magnesiumchlorid

Erweiterte Suche

Kristallstruktur
Struktur von Magnesiumchlorid
__ Mg2+     __ Cl
Allgemeines
Name Magnesiumchlorid
Andere Namen

E 511

Verhältnisformel MgCl2
CAS-Nummer
  • 7786-30-3 (wasserfrei)
  • 7791-18-6 (Hexahydrat)
Kurzbeschreibung

farblose, bitter schmeckende, zerfließliche, hexagonale Kristalle[1]

Eigenschaften
Molare Masse
  • 95,21 g·mol−1 (wasserfrei)
  • 203,3 g·mol−1 (Hexahydrat)
Aggregatzustand

fest

Dichte

2,32 g·cm−3 (20 °C, wasserfrei) [2]

Schmelzpunkt

708 °C [2]

Siedepunkt

1412 °C [2]

Löslichkeit

gut in Wasser (542 g·l−1 bei 20 °C) [2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
keine GHS-Piktogramme
H- und P-Sätze H: keine H-Sätze
P: keine P-Sätze
EU-Gefahrstoffkennzeichnung [4][2]
Reizend
Reizend
(Xi)
R- und S-Sätze R: 36/37
S: keine S-Sätze
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Magnesiumchlorid, MgCl2, ist das Magnesiumsalz der Salzsäure. Es bildet mehrere Hydrate.

Vorkommen

Magnesiumchlorid kommt in der Natur im Mineral Bischofit (MgCl2 • 6H2O) sowie als Doppelsalz Carnallit (KMgCl3 · 6 H2O) vor. Eine weitere natürliche Quelle ist das Meerwasser. In manchen Salzseen ist die Konzentration von Magnesium-Ionen sogar höher als die der Natrium-Ionen.

Gewinnung und Darstellung

Die technische Gewinnung von Magnesiumchlorid erfolgt durch Eindampfen der Endlaugen aus der Produktion von Kaliumchlorid. Dabei wird zuerst das Magnesiumchlorid-Hexahydrat (MgCl2 · 6H2O) erhalten. Weiteres Eindampfen liefert ein wasserärmeres Produkt. Wasserfreies Magnesiumchlorid wird durch Umsetzung von Magnesiumoxid mit Koks und Chlor gewonnen:

$ \mathrm {MgO+\ Cl_{2}+\ C\longrightarrow MgCl_{2}+\ CO} $

Im Labor kann Magnesiumchlorid aus Magnesiumhydroxid und Salzsäure

$ \mathrm {Mg(OH)_{2}+2\ HCl\longrightarrow MgCl_{2}+2\ H_{2}O} $

oder durch Umsetzung von Magnesium mit Salzsäure

$ \mathrm {Mg+2\ HCl\longrightarrow MgCl_{2}+H_{2}} $

gewonnen werden.

Eigenschaften

Magnesiumchlorid ist stark hygroskopisch. Seine Neigung zur Hydrolyse ist weniger ausgeprägt als beim Aluminiumchlorid (AlCl3). Wasserfreies Magnesiumchlorid kristallisiert im CdCl2-Gittertyp.

Magnesiumchlorid-Hexahydrat besitzt eine molare Masse von 203,3 g·mol−1, eine Dichte von 1,57 g·cm−3 und einen Schmelzpunkt von ca. 117 °C (Zersetzung).[2] Die Löslichkeit des Hexahydrates beträgt 1700 g/L (bei 20 °C).

Die Standardbildungsenthalpie von Magnesiumchlorid beträgt -642 kJ·mol−1.[5]

Verwendung

Magnesiumchlorid wird zur Gewinnung von elementarem Magnesium mittels Schmelzflusselektrolyse genutzt:[1]

$ \mathrm {MgCl_{2}\longrightarrow Mg+Cl_{2}} $

Es wird zusammen mit Magnesiumoxid in Estrichzementen verwendet.

In der Lebensmitteltechnik wird Magnesiumchlorid als Säureregulator, Festigungsmittel, Geschmacksverstärker, Trägerstoff oder Trennmittel eingesetzt. Es ist in der EU als Lebensmittelzusatzstoff der Nummer E 511 ohne eine Höchstmengenbeschränkung (quantum satis) für alle für Zusatzstoffe zugelassenen Lebensmittel sowie auch für Öko-Lebensmittel zugelassen. Es ist der Hauptbestandteil des Gerinnungsmittels Nigari und dient so der Herstellung von Tofu. Es wird weiterhin als Streusalzergänzung verwendet.

Des Weiteren wird Magnesiumchlorid zur Anhebung der Magnesiumkonzentration in Riffaquarien verwendet.

Es wird auch zur Staubbindung (Explosionsschutz) im Steinkohlebergbau verwendet.

Zur Bindung von Straßenstaub wurde es versuchsweise in einer Antistaubit genannten Lauge verwendet.

Als Magnesium Oil, eine gesättigte Magnesiumchlorid-Wasser–Lösung mit öliger Konsistenz, wird es in konzentrierter Form zur transdermalen Magnesiumsubstitution (Aufnahme über die Haut) verwendet.

Einzelnachweise

  1. 1,0 1,1 Helmut Sitzmann, in: Roempp Online - Version 3.5, 2009, Georg Thieme Verlag, Stuttgart.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 Eintrag zu Magnesiumchlorid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 30. März 2008 (JavaScript erforderlich)
  3. Datenblatt Magnesium chloride bei Sigma-Aldrich, abgerufen am 9. April 2011.
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. Eintrag bei www.thieme.de

Die cosmos-indirekt.de:News der letzten Tage

20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.