Borgruppe

(Weitergeleitet von Erdmetalle)
   Borgruppe   
Gruppe 13
Hauptgruppe 3
Periode
2 5
B
3 13
Al
4 31
Ga
5 49
In
6 81
Tl
7 113
Uut

Als Borgruppe bezeichnet man die 3. Hauptgruppe (nach neuer Nummerierung der IUPAC Gruppe 13) des Periodensystems. Sie enthält die Elemente Bor (B), Aluminium (Al), Gallium (Ga), Indium (In) und Thallium (Tl). Das künstlich hergestellte radioaktive Element Ununtrium (Uut), auch „Eka-Thallium“ genannt, zählt ebenfalls dazu.

Früher wurde z.T. die gesamte Borgruppe als „Erdmetalle“ bezeichnet, abgeleitet von der Tonerde, einem Aluminiumoxid (Al2O3). Dies war jedoch irreführend bzw. falsch, da Bor zu den Halbmetallen gerechnet wird. Heute werden als Erdmetalle, gemäß ihren Reaktionseigenschaften, stets nur die Elemente Aluminium (Al), Gallium (Ga), Indium (In), Thallium (Tl) und Ununtrium (Uut) bezeichnet.

Die Borgruppe

Eigenschaften

Das erste Element der Gruppe, Bor, unterscheidet sich aufgrund seiner halbmetallischen Eigenschaften wesentlich von den weiteren Elementen der Borgruppe, die allesamt Metalle sind und in ihren Eigenschaften den Erdalkalimetallen ähneln.

Physikalische Eigenschaften

Mit zunehmender Ordnungszahl wachsen Atommasse, Atomradius und Ionenradius. Den höchsten Schmelzpunkt hat Bor mit 2076 °C, den niedrigsten Gallium mit nur 29,76 °C (Körpertemperatur: ~37 °C). Dazwischen liegen Indium (156,6 °C), Thallium (304 °C) und Aluminium (660,32 °C). Die Siedepunkte nehmen von oben nach unten ab: Bor hat mit 3927 °C den höchsten Wert, danach folgen Aluminium (2467 °C), Gallium (2204 °C), Indium (2072 °C) und schlussendlich Thallium (1473 °C).

Mit steigender Ordnungszahl wächst die Dichte, während die Härte abnimmt. Bor hat mit 2,460 kg/dm3 die geringste Dichte und mit 9,3 die höchste Mohshärte, bei Thallium ist es mit einer Dichte von 11,850 kg/dm3 und einer Mohshärte von nur 1,2 genau umgekehrt.

Die höchste elektrische Leitfähigkeit hat Aluminium mit 37,7 MS/m (etwa ein Drittel weniger als Kupfer (58 MS/m)), die geringste weist Bor mit 10 mS/m auf.

Die 1. Ionisierungsenergie sinkt mit wachsender Ordnungszahl von 8,298 eV bei Bor auf 5,786 eV bei Indium ab, wobei Gallium jedoch mit 5,999 eV (anstatt des Aluminiums mit 5,968 eV) an zweiter Stelle steht. Thallium hat mit 6,108 eV einen erhöhten Wert.

Die Elektronegativität ist bei Bor mit 2,0 am größten, erreicht mit 1,5 bei Aluminium einen vorläufigen Tiefpunkt und steigt dann wieder auf 1,8, den Wert von Gallium, an. Im weiteren Verlauf sinkt die Elektronegativität wieder auf den Wert 1,4 (Thallium).

Bei sehr niedrigen Temperaturen leiten Aluminium, Gallium, Indium und Thallium elektrischen Strom ohne Widerstand. Sie werden zu Supraleitern.

Element Schmelzpunkt in K Siedepunkt in K Dichte in kg/m3 Mohshärte El. Leitfähigkeit in S/m
Bor 2349 4200 2460 9,3 1 · 10−4
Aluminium 933,47 2740 2700 2,75 37,7 · 106
Gallium 302,91 2477 5904 1,5 6,76 · 106
Indium 429,75 2345 7310 1,2 11,6 · 106
Thallium 577 1746 11850 1,2 6,17 · 106

Elektronenkonfiguration

Die Elektronenkonfiguration lautet [X] ys2yp1. Das X steht hierbei für die Elektronenkonfiguration des eine Periode höher stehenden Edelgases, und für das y muss die Periode eingesetzt werden, in der sich das Element befindet. Ab Gallium ist auch ein (y-1)d10-Orbital vorhanden; und ab Thallium findet sich auch ein (y-2)f14-Orbital.

Für die einzelnen Elemente lauten die Elektronenkonfigurationen:

  • Bor: [ He ] 2s22p1
  • Aluminium: [ Ne ] 3s23p1
  • Gallium: [ Ar ] 3d104s24p1
  • Indium: [ Kr ] 4d105s25p1
  • Thallium: [ Xe ] 4f145d106s26p1
  • Ununtrium (berechnet): [ Rn ] 5f146d107s27p1

Der Oxidationszustand ist +3. Nur Thallium und Indium kommen auch mit der Oxidationszahl +1, die bei Thallium sogar häufiger als +3 auftritt, vor.

Chemische Reaktionen

In den folgenden Gleichungen steht das Me für ein Element aus der dritten Hauptgruppe (Borgruppe).

$ \mathrm{4 \ Me + 3 \ O_2 \longrightarrow 2 \ Me_2O_3} $
Thallium bildet auch Tl2O
$ \mathrm{2 \ Me + 3 \ H_2 \longrightarrow 2 \ MeH_3} $
Nur Bor und Aluminium reagieren zu (immer kovalenten) Wasserstoffverbindungen. Bei Bor entstehen durch Dreizentrenbindung die strukturell vielfältigen Borane mit Diboran (B2H6) als einfachstem Vertreter, das hypothetische Monomer BH3 existiert nicht. AlH3-Moleküle sind durch Wasserstoffbrücken verbunden.
$ \mathrm{2 \ Al + 6 \ H_2O \longrightarrow 2 \ Al(OH)_3 + 3 \ H_2} $
Nur Aluminium setzt aus Wasser Wasserstoff frei. Bei Kontakt mit Luft/Sauerstoff bildet Aluminium aber sehr rasch eine Passivierungsschicht, welche das Metall vor der Reaktion mit Wasser schützt.
  • Reaktion im Alkalischen:
$ \mathrm{2 \ Al + 6 \ H_2O + 2 \ OH} $- $ \mathrm{\longrightarrow 2 \ Al(OH)_4} $- $ \mathrm{ + 3 \ H_2} $
Im alkalischen bildet sich kein Al(OH)3 sondern das Aluminat-ion Al(OH)4-.
$ \mathrm{2 \ Me + 3 \ Cl_2 \longrightarrow 2 \ MeCl_3} $
Thallium bildet auch TlCl.

Verbindungen

Borsäure
Bornitrid hat eine aromatische Struktur
  • sonstige:
    • Carborane sind kohlenstoffhaltige Borane (meist B10C2H12)
    • Borcarbid (B13C2) hat eine höhere Ritzhärte als Diamant und wird als Schleifmittel oder als Material für verschleißfeste Objekte verwendet.
    • BN: Verbindungen von Bor mit Stickstoff im Verhältnis 1:1 ähneln in ihrem Aufbau stark den Modifikationen des Kohlenstoffs, da das beim Bor fehlende Elektronenpaar vom Stickstoff beigesteuert wird.
Daneben existiert noch eine fullerenartige Modifikation.
    • Aluminiumchlorid (AlCl3) ist hygroskopisch und raucht an feuchter Luft. Der Rauch besteht aus den Hydrolyseprodukten Salzsäure (HCl) und Aluminiumhydroxid (Al(OH)3)
    • Aluminiumsulfat (Al2(SO4)3 · 12 H2O) bildet farblose Kristalle. Die wasserfreie Form ist ein weißes Pulver.
    • Aluminiumlegierungen verbessern die werktechnischen Eigenschaften von Aluminium. Die bekannteren sind Dural (4 % Cu, 0,3 % Mg, 1 % Mn und 0,5 % Si), Magnalium (3–9 % Mg) und Silumin (max. 14 % Si)
    • Galliumchlorid (GaCl3) bildet farblose Kristalle.
    • Gallium(III)-Verbindungen mit Elementen der 5. Hauptgruppe sind Halbleiter.
    • Indium(III)-chlorid (InCl3) bildet hygroskopische Kristallplättchen. In der Gasphase liegt es (wie alle Indiumhalogenide) als dimeres Molekül vor. Die Verbindung bildet oft Doppelsalze mit dem Chlorido-Komplex InCl63−.
    • Legierungen mit den Elementen der 5. Hauptgruppe dienen als Halbleiter. In Transformatoren und Spulen werden sie als Ferromagnete eingesetzt.
    • Thallium(I)-sulfat (Tl2SO4) bildet farblose, hochgiftige Kristalle.
    • Im Natriumthallid (NaTl) bilden die Tl-Ionen ein Diamantgitter, in dessen Zwischenräume Na+-Ionen eingelagert sind (siehe auch Zintl-Phasen).
    • Thallium(I)-alkoxide entstehen aus Alkoholen und Thallium und bilden würfelförmigen Tetramere.
    • Thallium(I)-oxid und Thallium(I)-hydroxid

Vorkommen

Die Erdkruste besteht zu 7,3 % aus Elementen der Borgruppe, die meist als Oxide vorliegen. Davon entfallen 99,94 % auf Aluminium, das häufigste Metall in der Erdkruste. Die übrigen Elemente der Borgruppe sind selten.

Diese 0,06 % teilen sich wie folgt auf:

    • 51 % Bor
    • 46 % Gallium
    • 3 % Indium
    • 0,2 % Thallium.

Aluminiumhaltige Mineralien:

Kein Element der Borgruppe tritt gediegen auf.

Weblinks

Literatur

  • Hans Breuer: dtv-Atlas Chemie (Band 1: Allgemeine und anorganische Chemie). S. 114-129 (2000), ISBN 3-423-03217-0

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

12.01.2021
Quantenoptik
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen.
11.01.2021
Quantenoptik - Teilchenphysik
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
11.01.2021
Galaxien
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
08.01.2021
Optik - Teilchenphysik
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
08.01.2021
Festkörperphysik - Teilchenphysik
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
07.01.2021
Raumfahrt - Festkörperphysik - Quantenoptik
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
07.01.2021
Astrophysik - Relativitätstheorie
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
05.01.2021
Thermodynamik
Weder flüssig noch fest
E
05.01.2021
Quantenoptik
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
22.12.2020
Galaxien - Sterne
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.