Eisen(III)-chlorid

Erweiterte Suche

Kristallstruktur
Kristallstruktur von Eisen(III)-chlorid
__ Fe3+     __ Cl
Allgemeines
Name Eisen(III)-chlorid
Andere Namen
  • Eisentrichlorid
  • Ferrichlorid
  • Eisensesquichlorid
Verhältnisformel FeCl3
CAS-Nummer
  • 7705-08-0 (wasserfrei)
  • 10025-77-1 (Hexahydrat)
PubChem 24380
Kurzbeschreibung
  • wasserfrei: dunkle, hexagonale, in der Aufsicht grüne, in der Durchsicht rote Blättchen[1]
  • Hexahydrat: schmutziggelbe, zerfließliche kristalline Stücke[1]
Eigenschaften
Molare Masse
  • 162,21 g·mol−1 (wasserfrei)
  • 270,29 g·mol−1 (Hexahydrat)
Aggregatzustand

fest

Dichte

2,90 g·cm−3[2]

Schmelzpunkt

304 °C[3]

Siedepunkt

319 °C[3], ab 120 °C Sublimation[2][3]

Dampfdruck

1 hPa (20 °C)[2]

Löslichkeit
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
05 – Ätzend 07 – Achtung

Gefahr

H- und P-Sätze H: 302-315-318-290
P: 280-​302+352-​305+351+338-​313 [2]
EU-Gefahrstoffkennzeichnung [4][2]
Gesundheitsschädlich
Gesundheits-
schädlich
(Xn)
R- und S-Sätze R: 22-38-41
S: 26-39
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Eisen(III)-chlorid ist eine chemische Verbindung von Eisen(III)- und Chloridionen. Die römische Ziffer III gibt die Oxidationszahl des Eisenions (in diesem Fall +3) an. Eisen(III)-chlorid gehört zur Gruppe der Eisenhalogenide.

Unter die Bezeichnung Eisenchlorid fällt auch die Verbindung Eisen(II)-chlorid (FeCl2).

Vorkommen

In der Natur kommt Eisen(III)-chlorid in Form der Minerale Molysit (Anhydrat) und Hydromolysit (Hexahydrat) vor.

Gewinnung und Darstellung

Wasserfreies Eisen(III)-chlorid erhält man im Labor, indem man Chlor bei Temperaturen von 250 bis 400 °C über Eisendraht, -wolle oder ähnliches leitet. Anschließend wird das Produkt zur Reinigung im Chlorstrom bei 220 bis maximal 300 °C sublimiert. Dabei ist darauf zu achten, dass Geräte und Chemikalien möglichst wasserfrei sind.

$ \mathrm {2\ Fe+3\ Cl_{2}\longrightarrow 2\ FeCl_{3}} $

Kristallwasserhaltiges Eisenchlorid kann auch durch Auflösen von Eisenpulver in Salzsäure

$ \mathrm {Fe+2\ HCl\longrightarrow FeCl_{2}+H_{2}} $

und nachfolgendes Einleiten von Chlor hergestellt werden, wobei das zunächst entstandene Eisen(II)-chlorid in Eisen(III)-chlorid übergeht:

$ \mathrm {2\ FeCl_{2}+Cl_{2}\longrightarrow 2\ FeCl_{3}} $

Dieses kann anschließend durch Eindampfen der Lösung gewonnen werden.

Zur technischen Produktion leitet man Chlor bei etwa 650 °C über Eisenschrott.

Wasserfreies Eisen(III)-chlorid wird zum Schutz vor Wasser unter Schutzgas (z. B. Stickstoff) unter Luftabschluss gelagert.

Eigenschaften

Eisen(III)-chlorid-Hexahydrat granuliert

Wasserfreies Eisen(III)-chlorid ist eine schwarze, leicht stechend nach Salzsäure riechende Substanz. Als wasserfreie Verbindung ist es extrem hygroskopisch, entzieht also der Luft Wasser. Mit steigendem Wassergehalt nimmt die hygroskopische Natur ab und die Farbe verändert sich über rot-bräunlich bis hin zu gelblich, es entsteht Eisen(III)-chlorid-Hexahydrat (FeCl3 · 6 H2O). Dieses reagiert durch Hydrolyse stark sauer. Beim Erhitzen zersetzt sich das Hydrat unter Abspaltung von Wasser und Chlorwasserstoff; es ist also auf diesem Weg nicht möglich, daraus wieder wasserfreies Eisen(III)-chlorid zu erhalten.

wässrige FeCl3-Lösung
Schichtstruktur

Eisen(III)-chlorid ist eine vorwiegend kovalente Verbindung mit Schichtstruktur. Oberhalb des Sublimationspunkts liegt sie vor allem als gasförmiges Fe2Cl6 vor, das mit steigender Temperatur zunehmend zu FeCl3 dissoziiert. Wasserfreies Eisen(III)-chlorid verhält sich chemisch ähnlich wie wasserfreies Aluminiumchlorid. Genau wie dieses ist es eine mäßig starke Lewis-Säure.

Verwendung

Eisen(III)-chlorid kann Kupfer oxidieren und lösen; deshalb kann man wässrige Eisen(III)-chlorid-Lösungen zum schonenden Ätzen von Leiterplatten verwenden:

$ \mathrm {Cu+2\ FeCl_{3}\longrightarrow CuCl_{2}+2\ FeCl_{2}} $

Eisen(III)-chlorid wird zur Bindung von Schwefelwasserstoff, zur Phosphatfällung und weiterhin als Fällmittel bei der Simultanfällung sowie allgemein bei der biologischen Abwasserreinigung als Flockungsmittel verwendet. In der chemischen Industrie wird es als selektiv wirkender Katalysator bei vielen Friedel-Crafts-Reaktionen eingesetzt. Viele Phenole ergeben mit Eisen(III)-chlorid grün oder blau gefärbte Komplexe und können so nachgewiesen werden. Durch Zusatz von Kaliumhexacyanoferrat(II) kann der Farbstoff Berliner Blau erzeugt werden (s. u.).

In wässriger Lösung wird es beim Textildruck als Oxidationsmittel und Farbbeize eingesetzt, in der Medizin zur intravenösen Substitution bei schweren Mangelzuständen und als blutstillendes Mittel (Hämostyptikum bzw. Adstringens, in Deutschland nicht mehr im Handel), zum Ätzen von Metallen (z. B. beim Kupfertiefdruck) und von Platinen bei gedruckten Schaltungen und bei der Herstellung von Farbstoffen (z.B. Anilinschwarz).

Sicherheitshinweise

Eisen(III)-chlorid ist gesundheitsschädlich beim Verschlucken und reizt die Haut. Es besteht die Gefahr ernster Augenschäden. In Verbindung mit Alkalimetallen, Allylchlorid und Ethylenoxid besteht Explosionsgefahr.[2]

Toxizität

Die LD50 bei Ratten beträgt bei oraler Applikation 450 mg·kg−1.

Nachweis

über Fe3+-Ionen

Gibt man zu Eisen(III)-chloridlösung Kaliumhexacyanoferrat(II), entsteht ein tiefblauer Niederschlag des Pigments Berliner Blau:

$ \mathrm {Fe_{(aq)}^{3+}+[Fe(CN)_{6}]_{(aq)}^{4-}+K_{(aq)}^{+}\longrightarrow KFe^{III}[Fe^{II}(CN)_{6}]_{(s)}} $.

Ein weiterer sehr empfindlicher Nachweis geschieht mittels Thiocyanat-Ionen (SCN):

$ \mathrm {[Fe(H_{2}O)_{6}]_{(aq)}^{3+}+SCN_{(aq)}^{-}\longrightarrow [Fe(SCN)(H_{2}O)_{5}]_{(aq)}^{2+}+H_{2}O} $.

Die gebildeten komplexen Pentaaquathiocyanatoeisen(III)-Ionen erscheinen intensiv rot.

Ein weiterer Nachweis wäre der rot-braune Niederschlag von Eisen(III)-oxidhydrat ("Eisen(III)-hydroxid"), der bei Reaktion mit OH-Ionen entsteht.

Einzelnachweise

  1. 1,0 1,1 1,2  Thieme Chemistry (Hrsg.): RÖMPP Online - Version 3.5. Georg Thieme Verlag KG, Stuttgart 2009.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 Eintrag zu CAS-Nr. 7705-08-0 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 29. März 2011 (JavaScript erforderlich).
  3. 3,0 3,1 3,2 Arnold Willmes, Taschenbuch Chemische Substanzen, Harri Deutsch, Frankfurt (M.), 2007.
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.

Literatur

  • Gerhart Jander, Ewald Blasius et al.: Einführung in das anorganisch-chemische Praktikum. 14. neu bearb. Aufl.. Hirzel, Stuttgart, 1995. ISBN 3-7776-0672-3
  • Michael Binnewies, Manfred Jäckel et al.: Allgemeine und Anorganische Chemie. Spektrum Akademischer Verlag, 2003. ISBN 3-8274-0208-5

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.