Dimethylsulfat

Erweiterte Suche

Strukturformel
Strukturformel von Dimethylsulfat
Allgemeines
Name Dimethylsulfat
Andere Namen
  • Schwefelsäuredimethylester
  • DMS
Summenformel C2H6O4S
CAS-Nummer 77-78-1
PubChem 6497
Kurzbeschreibung

farblose Flüssigkeit mit süßlichem Geruch[1]

Eigenschaften
Molare Masse 126,13 g·mol−1
Aggregatzustand

flüssig

Dichte

1,33 g·cm−3[1]

Schmelzpunkt

−31,8 °C[1]

Siedepunkt

188,5 °C (Zersetzung)[1]

Dampfdruck

0,35 hPa (20 °C)[1]

Löslichkeit

schlecht in Wasser (28 g·l−1 bei 18 °C)[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
05 – Ätzend 06 – Giftig oder sehr giftig 08 – Gesundheitsgefährdend

Gefahr

H- und P-Sätze H: 350-341-330-301-314-317
P: 201-​260-​280-​284-​301+310-​305+351+338Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [3]
EU-Gefahrstoffkennzeichnung [4] aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
Sehr giftig
Sehr giftig
(T+)
R- und S-Sätze R: 45-25-26-34-43-68
S: 53-45
MAK

nicht festgelegt, da krebserzeugend[1]

LD50

205 mg/kg (oral, Ratte)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Dimethylsulfat ist eine farblose, süßlich riechende sehr giftige Flüssigkeit. Sie ist der Dimethylester der Schwefelsäure und in mäßiger Ausbeute aus Methanol und H2SO4 erhältlich. Die häufig verwendete Abkürzung DMS ist nicht eindeutig, da sie ebenso für Dimethylsulfid, Dimethylsulfon und Dimethylsulfit verwendet wird. Eine Verwechslung der Stoffe ist wegen ihrer unterschiedlichen Eigenschaften gefährlich.

Synthese

Die Synthese erfolgt durch die Umsetzung von Dimethylether mit Schwefeltrioxid (SO3). Bis in die 1980er Jahre war dies die Hauptverwendung von Dimethylether, 1998 wurden von den in Mitteleuropa produzierten 50.000 t etwa 15.000 t zu Dimethylsulfat umgesetzt.[5]

Reaktionsverhalten

Das Sulfation ist ein sehr schwaches Nucleophil und damit eine hervorragende Abgangsgruppe in einer SN-Reaktion. Darauf beruht die kräftige Methylierungsfähigkeit des Dimethylsulfats. Bei Raumtemperatur reagiert zunächst nur eine Methylgruppe, bei Erwärmung können beide Methylgruppen ausgenutzt werden. Als Beispiel für eine solche Methylierung sei hier die Reaktion mit einer Carbonsäure erwähnt:

$ \mathrm {R{-}COOH+(CH_{3}O)_{2}SO_{2}+NaOH\longrightarrow } $$ \mathrm {R{-}COOCH_{3}+(CH_{3}O)SO_{3}^{-}+Na^{+}+H_{2}O} $
Herstellung eines Carbonsäuremethylesters

Verwendung

Dimethylsulfat wird in Labor und Technik zur Methylierung von Carbonsäuren, Aminen, Phenolen und anderen Verbindungen verwendet. Es ist ein Rohstoff für die Herstellung von Kosmetika, Farben, Arzneimitteln und Agrarprodukten.

Sicherheitshinweise

Dimethylsulfat ist beim Menschen als eindeutig karzinogen und mutmaßlich mutagen eingestuft. Es kann schnell durch intakte Haut diffundieren. Aufgrund der alkylierenden Wirkung ist Dimethylsulfat ein starkes Schleimhaut- und Lungengift. Darauf beruht auch die karzinogene Wirkung von Dimethylsulfat: Die DNA wird methyliert und kann dadurch nicht mehr gelesen werden, die vergiftete Zelle stirbt ab oder mutiert.[6] Auch Leber, Nieren, Herz und das Nervensystem werden angegriffen. Durch die bei der Hydrolyse entstehende Schwefelsäure wirkt Dimethylsulfat außerdem stark ätzend. Die Substanz ist nach Anhang II, Nr. 6 der Gefahrstoffverordnung (GefStoffV) als besonders gefährlicher krebserzeugender Stoff eingestuft und darf nur in geschlossenen Anlagen hergestellt oder verwendet werden.[7]

Bei der Arbeit mit der Substanz ist äußerste Vorsicht geboten. Da eine Warnwirkung fehlt (geruchsneutral, keine akute Reizwirkung), kann es leicht unbemerkt zur Aufnahme gefährlicher Mengen kommen. Nach einer ca. sechs- bis zwölfstündigen Latenzzeit folgen schwere Verätzungen der Atemwege. Das Tragen von speziellen Schutzhandschuhen und das Arbeiten in einem gut ziehenden Abzug sind unerlässlich. Reste von Dimethylsulfat sind mit einem Überschuss von 10 %igem Ammoniak zu vernichten.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 Eintrag zu Dimethylsulfat in der GESTIS-Stoffdatenbank des IFA, abgerufen am 29. Dezember 2012 (JavaScript erforderlich).
  2. 2,0 2,1 Eintrag aus der CLP-Verordnung zu CAS-Nr. 77-78-1 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich)
  3. Datenblatt Dimethyl sulfate bei Sigma-Aldrich, abgerufen am 25. März 2011.
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  5. Manfred Müller, Ute Hübsch: Dimethyl Ether. In: Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 2006, doi:10.1002/14356007.a08_541.
  6. Carsten Schmuck, Bernd Engels, Tanja Schirmeister, Reinhold Fink: Chemie für Mediziner, Pearson Studium, ISBN 978-3-8273-7286-4, S. 457.
  7. Gefahrstoffverordnung (GefStoffV) - Stand: 30. November 2010.

Weblinks

Sicherheitsdatenblätter

Sicherheitsdatenblätter verschiedener Hersteller in alphabetischer Reihenfolge für Dimethylsulfat:

Sonstige Stoffinformationen

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.