Ruthenium(VIII)-oxid

Erweiterte Suche

Strukturformel
Strukturformel von Ruthenium(VIII)-oxid
Allgemeines
Name Ruthenium(VIII)-oxid
Andere Namen

Rutheniumtetroxid

Summenformel RuO4
CAS-Nummer 20427-56-9
PubChem 119079
Kurzbeschreibung

gelber Feststoff[1]

Eigenschaften
Molare Masse 165,07 g·mol−1
Dichte

3,29 g·cm−3 (20 °C)[2]

Schmelzpunkt

25,4 °C[1]

Siedepunkt

40 °C (Zersetzung)[1]

Löslichkeit
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [4]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
EU-Gefahrstoffkennzeichnung [5][2]
Brandfördernd Reizend
Brand-
fördernd
Reizend
(O) (Xi)
R- und S-Sätze R: 8-36/38
S: 7/8-26-28-37/39
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Ruthenium(VIII)-oxid oder Rutheniumtetroxid ist eine chemische Verbindung des Rutheniums und das Oxid mit der höchsten Oxidationsstufe des Elements. Es handelt sich um einen gelben, leichtflüchtigen Feststoff, der ein starkes Oxidationsmittel ist und mit organischen Verbindungen explosiv reagiert.

Geschichte

Ruthenium(VIII)-oxid wurde erstmals 1860 von Karl Ernst Claus isoliert. Dieser gilt auch als Entdecker des Rutheniums.[3]

Gewinnung und Darstellung

Rutheniumtetroxid lässt sich durch Oxidation von wässrigen Lösungen von Ruthenium(III)-chlorid oder Ruthenaten mit Natriumperiodat, Natriumhypochlorit oder Natriumbromat gewinnen.[3] Durch die schlechte Löslichkeit in Wasser entweicht es gasförmig aus der Lösung und lässt sich dann in geeigneten Lösungsmitteln auffangen.[6]

Eigenschaften

In Ruthenium(VIII)-oxid erreicht das Ruthenium seine maximale Oxidationsstufe +8. Es ist damit neben Osmiumtetroxid, Xenon(VIII)-oxid und einigen ähnlichen Verbindungen die einzige bekannte Verbindung, in der ein Element diese höchste bekannte Oxidationsstufe erreicht.

Das Ruthenium(VIII)-oxid-Molekül ist tetraedrisch gebaut und besitzt einen Ru-O-Abstand von 170,5 pm.[7] Es kristallisiert in Form von gelben, rhombischen Nadeln[8] und hat einen typischen nach Ozon erinnernden Geruch[7].

Rutheniumtetroxid ist thermisch instabil und zersetzt sich beim Erhitzen in Ruthenium(IV)-oxid und Sauerstoff. Es ist instabiler als das entsprechende Osmiumanalogon. Auch durch Kalilauge wird Rutheniumtetroxid reduziert, es bilden sich sechswertige Ruthenate.[7] Explosiv reagiert die Verbindung mit Ammoniak, Ethanol, oxidierbaren organischen Verbindungen, Schwefel und Iodwasserstoff.[2]

Verwendung

Ruthenium(VIII)-oxid wird in der organischen Chemie als Oxidationsmittel genutzt. Beispiele sind die Djerassi-Rylander-Oxidation, bei der Alkene in Carbonylverbindungen gespalten werden, die Oxidation von Alkoholen zu Aldehyden, Ketonen oder Carbonsäuren oder von Alkinen zu 1,2-Diketonen. Häufig wird es in situ während der Reaktion erzeugt.[8]

Bei der Trennung der Platinmetalle und Gewinnung von elementarem Ruthenium ist Ruthenium(VIII)-oxid ein wichtiges Zwischenprodukt. Durch die Bildung dieser Verbindung kann Ruthenium von den anderen Platinmetallen abgetrennt werden.[6]

In der Transmissionselektronenmikroskopie kommt Ruthenium(VIII)-oxid als Kontrastierungsmittel von Polymeren und biologischen Proben zum Einsatz. Zu diesem Zweck lässt man Ruthenium(VIII)-oxid in die Probe eindiffundieren. Liegen innerhalb der Probe unterschiedliche Zusammensetzungen vor (z.B. Polymermischungen), so geht dies meist mit verschiedenen Diffusionsgeschwindigkeiten einher, was dazu führt, dass sich Ruthenium(VIII)-oxid in den Bereichen unterschiedlicher Zusammensetzung verschieden stark anreichert. Da Ruthenium auf Grund seiner vergleichsweise hohen Ordnungszahl jedoch die Elektronen stärker streut kommt in den Bereichen unterschiedlicher Rutheniumkonzentration zur ausbildung von Kontrastunterschieden.

Sicherheitshinweise

Ruthenium(VIII)-oxid ist brandfördernd. Bei Kontakt mit oxidierbaren Stoffen (wie zum Beispiel organischen Materialien) besteht sogar schon bei Raumtemperatur Explosionsgefahr.[2]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 David R. Lide: CRC Handbook of Chemistry and Physics. 90. Auflage, 2009, Taylor & Francis, ISBN 978-1-4200-9084-0, Kap. 4, S. 86.
  2. 2,0 2,1 2,2 2,3 Eintrag zu Ruthenium(VIII)-oxid in der GESTIS-Stoffdatenbank des IFA, abgerufen am 13. April 2010 (JavaScript erforderlich).
  3. 3,0 3,1 3,2 W. P. Griffith: Ruthenium and Osmium Oxo Complexes as Organic Oxidants. In: Platinum Metals Review. 1989, 33, 4, S. 181–185 (pdf).
  4. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  5. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  6. 6,0 6,1 Hermann Renner et al.: Platinum Group Metals and Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim 2001, doi:10.1002/14356007.a21_075.
  7. 7,0 7,1 7,2 Arnold F. Holleman, Nils Wiberg: Lehrbuch der Anorganischen Chemie. 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1, S. 1672–1673.
  8. 8,0 8,1 Helmut Sitzmann: Ruthenium-Verbindungen. In: Römpp Chemie Lexikon. Thieme Verlag, Stand April 2009.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

27.07.2021
Monde - Thermodynamik
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
27.07.2021
Quantenphysik - Thermodynamik
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
27.07.2021
Klassische Mechanik - Physikdidaktik
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.