Plasma (Physik)


Plasma (Physik)

Plasma in einer Plasmalampe
Magnetisch verformtes Plasma

Datei:Kerzenflamme im plattenkondensator.ogv

Plasma der Sonnenatmosphäre
Polarlicht

In der Physik ist ein Plasma (griechisch πλάσμα plásma ‚Gebilde‘) ein Gas, dessen Bestandteile teilweise oder vollständig in Ionen und Elektronen „aufgeteilt“ sind. Das bedeutet, ein Plasma enthält freie Ladungsträger. Mehr als 99 % der sichtbaren leuchtenden Materie im Universum befindet sich im Plasmazustand.

Der Begriff Plasma geht in diesem Sinne auf Irving Langmuir (1928) zurück.[1] Der Plasmazustand wird oft als vierter Aggregatzustand bezeichnet. In bestimmten Fällen kann ein Plasma einfach als elektrisch leitendes Gas mit Hilfe der Magnetohydrodynamik beschrieben werden. Im Allgemeinen müssen aber auch Transportprozesse (Strahlungstransport, Transport thermischer Energie, Teilchentransport, Impulstransport) berücksichtigt werden, ebenso weitere, die Plasmazusammensetzung bestimmenden Prozesse (also unter anderem Ionisation, Rekombination, Dissoziation, Molekül- und/oder Exzitonbildung und chemische Reaktionen der vorhandenen Spezies, Anregungs- und Absorptionsprozesse), so dass eine vollständige Beschreibung weit komplexer werden kann.

Entsprechend vorliegender bzw. vorherrschender Eigenschaften, werden Plasmen häufig auch etwas konkret-beschreibender benannt. So spricht man z. B. von Hochdruck- oder Niederdruckplasmen, kalten oder heißen Plasmen, Nichtidealen Plasmen, Dichten Plasmen, um nur einige Möglichkeiten zu nennen. Ebenso können die Bestandteile eines Plasmas zur Bezeichnung herangezogen werden, wie z. B. Quecksilber-Hochdruckplasma. Daneben spielt auch der Erzeugungsmechanismus in der Charakterisierung von Plasmen eine Rolle: So meint man beispielsweise mit Edelgas-Niederdruckentladung ein auf elektrischem Weg erzeugtes Edelgas-Plasma mit niedrigem Plasmadruck.

In der Teilchenphysik wird der quasi-freie Zustand von Quarks und Gluonen in Analogie als Quark-Gluon-Plasma bezeichnet.

Eigenschaften

Ein Plasma ist im Allgemeinen ein Gemisch aus neutralen und geladenen Teilchen (z. B. teilweise ionisiertes Plasma). In speziellen Fällen liegen nur geladene Teilchen, Elektronen und Ionen und/oder geladene Moleküle, vor (z. B. im vollständig ionisierten Plasma). Plasmen können unter anderem durch folgende drei Eigenschaften gekennzeichnet werden:

  1. Die Debye-Länge ist klein gegenüber den Abmessungen.
  2. Der Plasmaparameter (Anzahl von Teilchen in einer Kugel mit Radius gleich der Debye-Länge) ist groß.
  3. Die Zeit zwischen Stößen ist lang gegenüber der Periode der Plasmaoszillationen

Ein Plasma wird charakterisiert durch die vorhandenen Spezies (Elektronen, positive und negative Ionen, neutrale Atome, neutrale und geladene Moleküle), deren Dichten und Temperaturen (die nicht gleich sein müssen) und räumliche Struktur, insbesondere Ladung und Ströme bzw. elektrische und magnetische Felder.

Plasmen sind normalerweise quasineutral, d. h., die Netto-Ladungsdichte ist sehr klein im Vergleich zur Elektronendichte, bzw. der Quotient aus den Ladungen der negativ und positiv geladenen Teilchensorten ist näherungsweise 1. Ausnahmen beschränken sich auf Regionen von der Größe der Debye-Länge, z. B. in der Randschicht.

Das Verhältnis zwischen Ionenmasse und Elektronenmasse ist groß, mindestens 1836 (bei einem Wasserstoffplasma). Viele Eigenschaften von Plasmen lassen sich daraus ableiten.

Charakteristisch für Plasmen ist ihr typisches Leuchten, das durch Strahlungsemission angeregter Gasatome, Ionen oder Moleküle verursacht wird. Ausnahmen sind Plasmen, die sehr kalt sind (wie oft im Weltraum) oder die so heiß sind, dass die Atome vollständig ionisiert sind (wie im Zentrum von Sternen).

Vorkommen

Ein Teil des „leeren“ Raumes zwischen den Himmelskörpern befindet sich im Plasmazustand; außerdem die Sonne und andere Sterne.

Auf der Erde findet man in der Ionosphäre und in Blitzen natürliche Plasmen. Flammen haben trotz schwacher Ionisierung (abhängig von der Temperatur) auch teilweise Eigenschaften eines Plasmas.

In der Biosphäre gibt es keine praktisch nutzbaren natürlichen Plasmen. Um ein Plasma technisch anwenden zu können, muss man es daher erzeugen. Dies geschieht meist mit Hilfe einer Gasentladung.

Anwendungen

Verschiedene im Plasma ablaufende chemische oder physikalische Prozesse können ausgenutzt werden.

Die Anwendung von Plasmen lässt sich folgendermaßen gliedern:

  • Gasentladungslampen: unter anderem Energiesparlampen, Leuchtstofflampen und Bogenlampen enthalten Materie im Plasmazustand
  • Oberflächentechnik: Plasmen werden in der Halbleitertechnologie zum Plasmaätzen und zur plasmainduzierten Materialabscheidung (PECVD) verwendet. In der Beschichtungstechnik werden Funktionsschichten wie z. B. Verspiegelungen oder Anti-Haft-Schichten aufgebracht. In der Werkstofftechnik werden Plasmen zur Oberflächenmodifizierung (Aufrauen), zur plasmainduzierten Materialabscheidung (PECVD und Plasmapolymerisation), zur Oberflächenhärtung, Reinigung oder Plasmaoxidation eingesetzt;
  • Analysentechnik: zum Aufschließen von Probenmaterialien (Plasmaveraschung) und in Messgeräten zum Spurennachweis von Metallen (Inductively Coupled Plasma (ICP), ICP-MS; englisch inductively coupled plasma mass spectrometry, LIBS; englisch laser induced breakdown spectroscopy, siehe Atomspektroskopie);
  • Werkstoffverarbeitung: Lichtbogen-Schweißen und Plasmaschneiden
  • Plasmabildschirm;
  • Fusionsforschung: Der Brennstoff in einem Fusionsexperiment mit magnetischem Einschluss befindet sich im Plasmazustand.
  • Plasmamedizin:
    • Plasma-Desinfektion: Desinfektion von Gegenständen, Körperteilen, Wunden, etc.
    • Coblation: Die energiereichen Ionen im Plasma können menschliches Gewebe bei relativ geringen Temperaturen unter 70 °C trennen. Dies wird für chirurgische Maßnahmen an Bandscheiben, Gaumenmandeln oder Nasenmuscheln genutzt.[2]

Beleuchtungstechnik

Das für Plasmen typische Leuchten wird ausgenutzt. Im Plasma führen Stoßprozesse schneller Elektronen mit Gasatomen oder Molekülen dazu, dass Elektronen aus der Hülle der getroffenen Partikel Energie zugeführt wird. Diese Energie wird dann zu einem späteren Zeitpunkt als abgestrahltes Licht freigesetzt. Das entstehende Spektrum hängt stark von den vorhandenen Gasen, dem Druck und der mittleren Energie der Elektronen ab.

In einigen Fällen kann das emittierte Licht direkt genutzt werden, so z. B. in einigen Metalldampf-Hochdrucklampen (beispielsweise Natrium – an dem stark gelben Licht zu erkennen), die in der Straßenbeleuchtung verbreitet zum Einsatz kamen und kommen oder bei bestimmten Edelgas-Hochdruckentladungen (z. B. Xenon). In anderen Fällen, wenn die Emission eher im UV-Bereich erfolgt (im Wesentlichen Quecksilberdampflampen), muss die elektromagnetische Strahlung in für Menschen sichtbares Licht umgewandelt werden. Dies erreicht man mit Leuchtstoffen, die auf der Wand der Entladungsgefäße aufgebracht sind. Dabei wird die ultraviolette Strahlung im Leuchtstoff absorbiert und als Strahlung im Sichtbaren wieder abgegeben. Beispiele hierfür sind die bei der Innenraumbeleuchtung eingesetzten Leuchtstoff- und Energiesparlampen und die im Außenbereich verwendeten Quecksilberhochdrucklampen.

Plasmachemische Anwendungen

Der Einsatz von Plasmen für chemische Reaktionen beruht auf der durch sie gelieferten hohen Konzentrationen chemisch reaktiver Molekülbruchstücke. In der Vergangenheit gab es Versuche, plasmachemische Verfahren industriell zur Synthese einzusetzen. Die komplexe Plasmazusammensetzung macht derartige Umsetzungen jedoch sehr aufwändig und wenig effizient. Plasmachemische Verfahren werden deshalb heute in der chemischen Synthese praktisch nicht mehr eingesetzt, sondern nur noch bei der Entsorgung giftiger Gase.

Ein Beispiel für die erfolgreiche Anwendung ist die Synthese von Diamanten. Dabei wird ein Diamant aus dem Plasma auf eine Oberfläche abgeschieden. Diese Diamantschicht ist polykristallin und hat nicht die Qualität von Schmuckdiamanten. Die Wachstumsraten dieser Schicht sind sehr klein (ca 1 µm/h). Daher sind dickere Schichten sehr teuer.

In großem Umfang wird Plasmachemie weiterhin in der Halbleiterindustrie betrieben. Hier werden Plasmen zum (Trocken-)Ätzen (Plasmaätzen) und zur Schichtabscheidung PECVD verwendet. Bei Ätzprozessen wird im Gegensatz zur Beleuchtungstechnik der direkte Kontakt des Plasmas mit der Oberfläche ausgenutzt, um gezielten Materialabtrag zu erreichen. Eine Schlüsselrolle spielen hierbei die in Wandnähe herrschenden elektrischen Felder, welche charakteristisch für Randschichten sind. Ein weiterer großer Anteil zum Ätzabtrag bilden die im Plasma enthaltenen freien Radikale (Ionen). Diese können mit Hilfe von Magnetfeldern beschleunigt werden und so zusätzlichen, gerichteten Ätzabtrag erreichen. Das Plasmaätzen muss nicht mit chemisch-reaktiven Vorgängen verbunden sein und ist insofern eine physikalische Anwendung.

Physikalische Anwendungen

Plasmen werden zum Schneiden, Schweißen und Löten mit Plasmabrennern eingesetzt. Das Lichtbogenschweißen verwendet einen zwischen Werkstück und einer Elektrode brennenden Lichtbogen.

Die Magnetoplasmadynamik (siehe Magnetohydrodynamik) beschreibt das Verhalten strömender Plasmen im Magnetfeld. Es kann Elektroenergie gewonnen werden (MHD-Generator) oder es dient dem Antrieb von Raumfahrzeugen (Magnetoplasmadynamischer Antrieb).

Hochdichte heiße Plasmen - erzeugt durch Laserimpuls-Bestrahlung oder durch elektrische Entladungen - dienen als EUV-Strahlungsquelle. Potentieller Anwender ist die EUV-Lithografie.

Klassifizierung

Eine Klassifizierung der höchst unterschiedlichen Formen von Plasma kann aufgrund mehrerer Kriterien vorgenommen werden. Eines davon ist die Plasmadichte. In der Natur vorkommende Plasmen variieren in ihrer Dichte um mehr als zehn Größenordnungen. Extrem hohe Dichte besitzt das Plasma im Sonneninneren, extrem niedrige Dichte herrscht in interstellaren Gasnebeln. Entsprechend extrem sind die Unterschiede in den physikalischen Eigenschaften von Plasmen. Ein Schlüsselparameter zur Unterscheidung von Plasmen ist der Druck des Gases, in welchem sich die ionisierten Teilchen bewegen. Dieses Hintergrundgas wird auch als Neutralgas bezeichnet.

Gasdruck

Es kann unterschieden werden zwischen

  • Niederdruckplasmen
  • Normaldruckplasmen bzw. Atmosphärendruckplasmen
  • Hochdruckplasmen

Niederdruckplasmen werden in verdünnten Gasen erzeugt, deren Druck signifikant niedriger liegt als der Atmosphärendruck. Beispiele sind Glimmlampen, das Polarlicht oder Leuchtstofflampen.

Bei Hochdruckplasmen ist der Druck des Gases signifikant höher als der Atmosphärendruck. Ein typisches Beispiel sind Hoch- und Höchstdruck-Gasentladungslampen. Auch in Gewitterblitzen und Funken herrscht kurzzeitig sehr hoher Druck.

Normaldruckplasmen werden ungefähr bei atmosphärischem Druck erzeugt. Eine typische Anwendung sind die dielektrisch behinderten Entladungen, die beispielsweise bei der Bearbeitung von Kunststoffmaterialien eingesetzt werden. Ein weiteres Beispiel sind Lichtbögen, wie sie beim elektrischen Schweißen entstehen.

Thermisches Gleichgewicht

Ein wichtiges Merkmal eines Plasmas ist, inwieweit es sich im thermischen Gleichgewicht befindet:

  • Im vollständigen thermischen Gleichgewicht haben die Schwerteilchen (Moleküle, Atome, Ionen) die gleiche Temperatur wie die davon abgelösten Elektronen, das Plasma befindet sich auch im Strahlungsgleichgewicht mit der Umgebung, das heißt, es emittiert Hohlraumstrahlung.
  • Im lokalen thermischen Gleichgewicht haben nur die Schwerteilchen (Moleküle, Atome, Ionen) die gleiche Temperatur wie die davon abgelösten Elektronen, es werden aber charakteristische Spektrallinien anstatt Hohlraumstrahlung emittiert, die Strahlungstemperatur der Umgebung ist niedriger (oder höher, dann wird mehr Strahlung absorbiert) als die Plasmatemperatur.
  • Bei nicht-thermischen Plasmen dagegen haben die Elektronen eine viel höhere Temperatur als die Schwerteilchen. Niederdruckplasmen verfügen typischerweise über diese Eigenschaft.

Bei entsprechender äußerer Anregung können die Elektronen kinetische Energien in der Größenordnung mehrerer Elektronenvolt aufnehmen, was mehreren 10.000 °C entspricht. Die Temperatur des Gases kann gleichzeitig wesentlich niedriger, beispielsweise bei Raumtemperatur, liegen. Mit derartigen Plasmen können Werkstücke bearbeitet werden (Beschichtung, Plasmaätzen), ohne diese übermäßig zu erhitzen. Damit eignen sich Niedertemperaturplasmen in besonderer Weise für die Oberflächenmodifizierung von temperaturempfindlichen Polymeren.

Ionisationsgrad

Der Grad der Ionisierung des Plasmas ist eine weitere charakteristische Eigenschaft. Der Ionisierungsgrad gibt den Anteil der Spezies an, die durch Ionisation Elektronen abgegeben haben. Die Saha-Gleichung beschreibt dabei den Grad der Ionisierung dieses Plasmas als Funktion der Temperatur, der Dichte und der Ionisierungsenergien der Atome.

  • Thermische Plasmen mit hoher Temperatur (beispielsweise Sonnenkorona) sind fast vollständig ionisiert.
  • Bei technisch hergestellten Niederdruckplasmen dagegen liegt der Grad der Ionisierung maximal bei wenigen Promille.

Die durch den Ionisierungsgrad und den Gasdruck bestimmte Ladungsträgerdichte eines Plasmas bestimmt die Ausbreitungsfähigkeit elektromagnetischer Wellen im Plasma, siehe auch Ionosphäre.

Erzeugung

Ein Plasma kann sowohl durch innere (Beispiel Sonne) oder durch äußere (Beispiel technische Gasentladungen) Energiezufuhr erhalten werden. Bleibt die Energieeinkopplung aus bzw. übersteigen die Energieverluste – beispielsweise durch Wärmeleitung und/oder durch Strahlungsemission – den Energieeintrag, so geht der Plasmazustand verloren. Positive und negative Ladungsträger können dann zu neutralen Atomen, Molekülen oder Radikalen rekombinieren.

Die Ladungsträger können durch ambipolare Diffusion z. B. an Wänden von Entladungsgefäßen oder ins Vakuum des Weltalls verloren gehen. Ambipolare Diffusion kann auch dann stattfinden, wenn der Plasmazustand stabil ist.

Um den Verlust geladener Teilchen zu kompensieren, müssen solche erzeugt werden, was z. B. durch Stoßionisation geschieht. Elektronen mit hinreichend großer kinetischer Energie sind unter bestimmten Umständen (bei Vorliegen entsprechender Querschnitte für die konkreten Prozesse) in der Lage, beim Stoß mit Atomen, Ionen oder Molekülen, Elektronen aus deren Verbund herauszuschlagen. Dieser Vorgang kann unter geeigneten Bedingungen als Lawineneffekt ablaufen, sofern nach dem Stoß aus einem vorhandenen Elektron zwei (plus ein positives Ion) werden. Bei technischen Plasmen kann die räumliche Begrenzung des Plasmas problematisch sein. Die energiereichen Teilchen des Plasmas vermögen unter Umständen Wände, Werkstücke oder Elektroden durch intensive Strahlung oder energiereiche Teilchen zu schädigen, letzterer Prozess ist auch als Sputtern bekannt. Besonders in der Beleuchtungstechnik ist der Abtrag von Elektrodenmaterial aufgrund der damit einhergehenden Reduzierung der Standzeit unerwünscht.

Methoden der Energiezufuhr

Thermische Anregungen

Bei thermischer Anregung werden die Ladungsträger durch Stoßionisation aufgrund der Wärmebewegung erzeugt. Es sind bei Normaldruck ca. 15.000 K erforderlich, um eine nahezu vollständige Ionisation zu erzielen. Mit steigendem Druck steigt die erforderliche Temperatur. Eine Möglichkeit hierfür ist die Bestrahlung mit fokussierter Laserstrahlung. Trifft der gebündelte Laserstrahl auf einen Festkörper, entstehen Temperaturen von einigen tausend Kelvin, so dass eine thermische Ionisation stattfindet, die sich auch in den Gasraum über der Oberfläche ausbreitet. Das entstehende Plasma absorbiert seinerseits weitere Laserstrahlung und verstärkt den Vorgang. Bei besonders kurzen Laserpulsen kann es zum Phänomen der Selbstfokussierung oder Abschirmung des Strahls durch das Plasma kommen.

Chemische und nukleare Reaktionen

Führt eine exotherme Reaktion zu einer starken Erwärmung des Gases, so bewirken die durch die schnelle Molekülbewegung verursachten Stoßionisationsprozesse den Übergang in den Plasmazustand. Als Reaktion kommen chemische Verbrennung, Kernspaltung und Kernfusion in Frage.

Strahlungsanregungen

Bei Plasmaanregung durch Strahlung werden die Ladungsträger durch ionisierende Strahlung erzeugt. Hierfür muss die Quantenenergie bzw. Teilchenenergie die Ionisierungsenergie der bestrahlten Materie übersteigen. Das ist in Gasen bereits mit Ultraviolett möglich. Röntgen- und weiche Gammastrahlung wird in Gasen dagegen wenig absorbiert. Ab einer bestimmten Energie findet jedoch Paarbildung statt und die Ionisation ist effektiv. Ein hohes Ionisationspotenzial haben Beta- und Alpha-Strahlen.

Anregungen durch elektrostatische Felder

Elektrostatische Felder führen zu Entladungen oder zu Vorentladungen. Weitere Ionen werden durch Elektronen-Stoßionisation erzeugt. Beispiele sind der Gewitterblitz elektrostatische Entladungen.

Anregung durch Gleichspannung

Zwischen zwei Elektroden wird eine ausreichend hohe elektrische Gleichspannung angelegt. Bei geeigneter Kombination von Spannung, Elektrodenabstand und Gasdruck kommt es zu einem Überschlag und dem Zünden einer Entladung zwischen den Elektroden. Dabei wird zwischen Gasentladungen, Funkenentladung und Vakuumfunken unterschieden.

In allen Fällen bildet sich ein Plasma aus, welches auch den Stromfluss der Entladung ermöglicht. Ist der Stromfluss ausreichend hoch, erhitzen sich die Elektroden und der Elektronenaustritt wird erleichtert, es entsteht ein Lichtbogen. Lichtbögen werden beim Elektroschweißen und bei Bogenlampen (Lichtbogenlampen) ausgenutzt. Sie können auch mit Wechselspannung betrieben werden.

Die Höhe der bis zum Zünden eines Plasmas nötigen Spannung hängt vom Elektrodenabstand, deren Form und dem Gasdruck ab (Paschen-Gesetz).

Drahtexplosion

Durch einen hohen Stromfluss (z. B. aus einer Kondensatorbatterie) durch einen dünnen Metalldraht verdampft dieser explosionsartig in einigen Mikro- bis Millisekunden. Dadurch entsteht eine teilweise ionisierte Metalldampfwolke und es kann eine Bogenentladung zünden, die zur weiteren Ionisierung des Metalldampfes führt. Zunächst tritt also thermische Anregung, danach auch Anregung durch Stoßionisation statt. Ein Anwendungsgebiet der Drahtexplosion findet sich in der Z-Maschine.

Um die rasche Ausdehnung des Plasmas zu verhindern, kann dies in einem nicht leitenden Röhrchen stattfinden (Kapillarentladung).

Anregungen durch elektromagnetische Felder

Bei den Anregungen durch elektromagnetische Felder werden die Ladungsträger durch eine Elektronenstoßionisation erzeugt. Sehr hohe Intensität im Fokus eines Laserstrahles kann auch in Luft zur Ausbildung eines Plasmas führen (Luftdurchbruch). Verantwortlich ist die sehr hohe elektrische Feldstärke der Wellen.

Kapazitive elektrische Anregung

Ein ausreichend starkes elektrisches Wechselfeld wird an zwei Platten angelegt. Zwischen den Platten bildet sich ein Plasma, in welchem geladene Teilchen mit der Frequenz des Wechselfeldes hin und her oszillieren (Hochfrequenzanregung). Aus den Platten treten dabei nicht zwingend Ladungsträger aus. Welche Teilchen oszillieren, hängt von deren Masse und Ionisationsgrad ab. Die Frequenz, bis zu der hin eine Teilchensorte mitschwingen kann, wird Plasmafrequenz genannt.

Die Platten können auch außerhalb des Entladungsgefäßes angebracht sein, sodass deren Feld nur aufgrund der Kapazität der Wandung in das Plasma gelangt. Man spricht dann von elektrodenloser Anregung. Auf diese Weise werden Verunreinigungen durch das Elektrodenmaterial und der Verschleiß der Elektroden vermieden. Nach diesem Prinzip arbeiten einige Kohlendioxidlaser und Entladungs-Lampen mit dielektrischer Barriere.[3] Siehe hierzu auch Stille elektrische Entladung.

Induktive (magnetische) Anregung

Induktiv angeregtes Niederdruckplasma in einem Glasrohr in einer Hochfrequenzspule

Ein hochfrequenter Wechselstrom durch eine ein Vakuumgefäß umgebende Anregungsspule induziert ringförmige Ströme in einem Plasma. Angewendet wird das Verfahren in Induktionslampen und bei der Gasphasenabscheidung (PECVD) in Rohren.

In Tokamaks für Kernfusionsexperimente wird das Plasma in einem ringförmigen Vakuumbehälter durch einen parallel geführten, ansteigenden Strom geheizt und gleichzeitig durch das starke ringförmige Magnetfeld einer zweiten, toroidal gewickelten Spule berührungslos eingeschlossen.

Anregung durch Mikrowellen

Hierbei werden Mikrowellen eines Magnetrons in den Reaktionsraum geleitet. Die Feldstärke der elektromagnetischen Welle muss zunächst hoch genug sein, um einen elektrischen Durchbruch und Stoßionisation hervorzurufen. Ist das Plasma gezündet, verändern sich die Feldstärke- und Impedanzverhältnisse stark – die Anpassungsbedingungen des sendenden Magnetrons ändern sich.

Praktische Anwendungen sind Plasmageneratoren und -beschichtungsanlagen, chemische Reaktoren, die Schwefellampe sowie die Diamantsynthese.

Pinch-Effekt

Der Strom, der durch das Plasma fließt, erzeugt ein Magnetfeld, welches wiederum das Plasma zusammenschnürt. Dies wird als Pinch-Effekt bezeichnet. Dabei wird das Plasma dichter und heißer. Wenn die Stromquelle hohe Ströme im Bereich einiger zehn Kiloampere liefert, können sehr dichte, heiße und sehr stark ionisierte Plasmen erzeugt werden, die Röntgenstrahlung emittieren oder in denen sogar Kernfusionen stattfinden (Tokamak). Der Pinch-Effekt ist auch die Ursache dafür, dass sich in einem Blitz ein enger Kanal für den Strom bildet.

Literatur

  • Michael A. Lieberman, Allan J. Lichtenberg: Principles of Plasma Discharges and Materials Processing. Wiley, New Jersey 2005, ISBN 0-471-72001-1.
  • R. J. Goldston, P. H. Rutherford: Plasmaphysik. Eine Einführung. Vieweg, Braunschweig 1998, ISBN 3-528-06884-1 .
  • K.-H. Spatschek: Theoretische Plasmaphysik. Eine Einführung. Teubner, Stuttgart 1990, ISBN 3-519-03041-1.
  • F. F. Chen: Introduction to Plasma Physics and Controlled Fusion. Plenum Press, New York 1983.
  • Subrahmanyan Chandrasekhar: Plasma Physics. University of Chicago Press 1960.
  • Eugene N. Parker: Cosmical Magnetic Fields: Their Origin and Their Activity. Clarendon Press, Oxford 1979.
  • F. Cap: Einführung in die Plasmaphysik. I. Theoretische Grundlagen. Vieweg, Wiesbaden 1984.
  • Rainer Hippler, Sigismund Pfau, Martin Schmidt, Karl H. Schoenbach: Low Temperature Plasma Physics - fundamental aspects and applications. Wiley-VCH, Berlin 2001, ISBN 3-527-28887-2.
  • Vadim N. Tsytovich: Lectures on Non-linear Plasma Kinetics. Springer, Berlin 1995, ISBN 0-387-57844-7.
  • Hubertus M. Thomas, Gregor E. Morfill: Plasmakristalle an Bord der ISS: Komplexe Plasmen in Schwerelosigkeit. In: Physik in unserer Zeit. 36, Nr. 2, 2005, ISSN 0031-9252, S. 76–83.
  • Hannelore Dittmar-Ilgen: Perspektivenreiche Hochleistungslaser. In: Naturwissenschaftliche Rundschau. 10, 2006, S. 549.

Weblinks

Wiktionary Wiktionary: Plasma – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Plasmaphysik – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Einzelnachweise

  1. I. Langmuir: Oscillations in Ionized Gases. In: Proceedings of the National Academy of Science. 14, 1928, S. 627–637 (PDF).
  2. http://www.arthrocareent.com/wt/tert_page/int_coblation_explained
  3. Rich P. Mildren: Dielectric Barrier Discharge Lamps. Macquarie Universität, Australien(engl.), Abgerufen am 11. November 2008.