Teilchenphysik

Die Teilchenphysik widmet sich als Disziplin der Physik der Erforschung der Teilchen. Beschränkte sich dies gegen Ende des 19. Jahrhunderts auf Moleküle, Atome und Nukleonen, so liegt der Schwerpunkt heute auf den Elementarteilchen.

In der modernen Teilchenphysik werden physikalische Modelle vor allem durch Experimente an Teilchenbeschleunigern überprüft, in denen verschiedene Teilchen aufeinandergeschossen werden (beispielsweise Elektronen auf Positronen). Die entstehenden Reaktionsprodukte, deren Verteilung in den Teilchen- und Strahlungsdetektoren sowie die Energie- und Impulsbilanz geben Aufschluss über Eigenschaften schon bekannter oder vermuteter „neuer” Teilchenarten.

Diese Experimente benötigen beschleunigte Teilchenstrahlen sehr hoher Energie. Deshalb wird oft von der Hochenergiephysik statt der Teilchenphysik gesprochen; diese Bezeichnung wird allerdings auch für schwerionenphysikalische Experimente bei hohen Energien benutzt.

Als sich die Zahl der bekannten Elementarteilchen immer weiter vergrößerte, widmete man sich der Ordnung dieser Partikel nach ihren Eigenschaften und begann gleichzeitig Vorhersagen über noch nicht beobachtete Teilchen aufzustellen. Der gegenwärtige Stand der Teilchenphysik – und viele ihrer Vorhersagen – ist im sogenannten Standardmodell zusammengefasst.

Standardmodell der Elementarteilchenphysik

Hauptartikel: Standardmodell
Fehler beim Erstellen des Vorschaubildes:
Eine mögliche Einteilung der meisten bekannten subatomaren Teilchen. Diese sind unter anderem Gegenstand aktueller Forschung in der Teilchenphysik.

Das heutige Wissen über die Elementarteilchen und ihre Wechselwirkungen wird im Standardmodell der Elementarteilchenphysik zusammengefasst. Das Standardmodell erlaubt eine konsistente Beschreibung der starken, der schwachen und der elektromagnetischen Wechselwirkung in Form von Quantenfeldtheorien.

Im Standardmodell existieren zwölf Teilchen und zwölf Antiteilchen, welche in Leptonen und Quarks unterteilt werden. Die Kräfte, welche zwischen diesen Teilchen wirken, werden durch den Austausch von Eichbosonen vermittelt. Für die elektromagnetische Wechselwirkung ist dies das masselose Photon, für die schwache Wechselwirkung sind dies die massiven W-Bosonen und das ebenfalls massive Z-Boson, während die starke Wechselwirkung durch acht masselose Gluonen vermittelt wird. Auch gibt es die Annahme, dass ein Graviton existieren könnte, welches die Gravitation vermittelt.

Ein wichtiger Unterschied gegenüber Vorstellungen der Alltagswelt und der klassischen Physik ist, dass das Standardmodell sehr stark holistisch geprägt ist. Verbinden sich mehrere Bausteine zu einem einzigen neuen Gegenstand, stellt man sich klassisch vor, dass die Bausteine im neuen Gegenstand noch vorhanden sind und dort weiterexistieren; bei einem Zerfall des neuen Gegenstandes erhält man wie beim Auseinanderbauen eines Lego-Modells wieder die ursprünglichen Bausteine. Auch im Standardmodell können zwei zusammenstoßende Teilchen (z. B. ein Elektron und ein Positron) sich zu einem einzigen (z. B. einem Photon) verbinden. Das neue Teilchen wird jedoch nicht als aus den beiden ursprünglichen zusammengesetzt gedacht, sondern ist wieder ein „unteilbares” Elementarteilchen (d. h. ohne Substruktur). Diese Vorstellung entspricht der Beobachtung, dass das neue Teilchen in Teilchen anderer Arten (z. B. Myonen) zerfallen kann als die, aus denen es entstanden ist.

Im Rahmen des Standardmodells wird zusätzlich das Higgs-Boson vorausgesagt, das bis heute (Juni 2011) nicht beobachtet werden konnte. Forscher gehen davon aus, dass der LHC des CERN innerhalb seiner Betriebsdauer in der Lage sein wird, das Higgs-Boson nachzuweisen. Sollte das auch mit diesem Teilchenbeschleuniger nicht gelingen, müsste die Theorie von der Existenz des Teilchens verworfen werden. Durch das Higgs-Boson ließe sich theoretisch elegant erklären, warum (fast) alle anderen Teilchen nicht masselos (wie z. B. das Photon) sind, sondern eine Masse besitzen.

Es steht aus theoretischen Überlegungen fest, dass das Standardmodell oberhalb bestimmter Teilchenenergien keine korrekte Beschreibung der Welt liefern kann. Aus diesem Grund wurden auch ohne empirische Daten, die auf ein Versagen des Standardmodells hinweisen, Erweiterungen des Standardmodells entwickelt. Davon seien hier die Supersymmetrie und die Stringtheorie genannt.

Experimentelle Teilchenphysik

In der Teilchenphysik werden Streuexperimente durchgeführt.

Die größten internationalen Labore für Teilchenphysik sind:

  • CERN, an der französisch-schweizerischen Grenze nahe Genf. Die Hauptbeschleuniger sind der mittlerweile abgebaute LEP-Ring (Large Electron-Positron Collider), und LHC (Large Hadron Collider).
  • DESY in Hamburg (Deutschland). Hauptbeschleuniger war HERA (Außerbetriebnahme am 30. Juni 2007), hier wurden Elektronen bzw. Positronen mit Protonen zur Kollision gebracht.
  • SLAC, nahe Palo Alto (USA). Hauptbeschleuniger ist PEP-II, hier werden Elektronen mit Positronen zur Kollision gebracht.
  • Fermilab, nahe Chicago (USA). Hauptbeschleuniger war das Tevatron (Außerbetriebnahme am 30. September 2011), das Protonen mit Antiprotonen zur Kollision brachte.
  • Brookhaven National Laboratory, Long Island (USA). Hauptbeschleuniger ist der RHIC (Relativistic Heavy Ion Collider), der Schwerionen (z. B. Gold) oder Protonen zur Kollision bringt.

Darüber hinaus gibt es viele weitere Teilchenbeschleuniger, welche, je nach physikalischer Fragestellung, in unterschiedlichen Energiebereichen arbeiten.

Weblinks

Wiktionary Wiktionary: Teilchenphysik – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks Wikibooks: Teilchenphysik – Lern- und Lehrmaterialien
 Commons: Particle physics – Album mit Bildern, Videos und Audiodateien

Newsmeldungen wie "Teilchenphysik" auf cosmos-indirekt.de

06.07.2018
Teilchenphysik
Teilchenphysiker der TU Dresden an Entdeckung neuer Quarks-Wechselwirkungen beteiligt
Teilchenphysiker der TU Dresden und internationale Forschungskollegen haben eine äußerst seltene Wechselwirkung zwischen Quarks entdeckt, die man mit winzigen Lichtschwertern vergleichen kann.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.03.2021
Sonnensysteme - Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik - Optik - Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.