Magnetisierung

Erweiterte Suche

Physikalische Größe
Name Magnetisierung
Formelzeichen der Größe $ {\vec {M}} $
Größen- und
Einheitensystem
Einheit Dimension
SI A·m-1 L−1 $ \cdot $ I
Vereinfachter Vergleich der magnetischen Flussdichte von ferromagnetischen (μf), paramagnetischen (μp) und diamagnetischen Materialien (μd) zu Vakuum (μ0)

Magnetisierung (Formelzeichen $ M $) ist eine physikalische Größe zur Charakterisierung des magnetischen Zustands eines Materials, die sich berechnet als das magnetische Moment $ \mu $ pro Volumen $ V $:

$ {\vec {M}}={\frac {d{\vec {\mu }}}{dV}} $


Außerdem steht die Magnetisierung mit der magnetischen Flussdichte $ B $ und der magnetischen Feldstärke $ H $ über folgende Gleichung im Zusammenhang:

$ {\begin{aligned}{\vec {B}}&=\mu _{0}\left({\vec {H}}+{\vec {M}}\right)\\&=\mu {\vec {H}}\end{aligned}} $

Hierbei ist $ \mu _{0} $ die magnetische Feldkonstante bzw. μ die Permeabilität. Ist μ kleiner als μ0, so liegt eine negative Magnetisierung vor. Ansonsten wirkt eine positive Magnetisierung, wie beispielsweise bei paramagnetischen Materialien. Ferromagnetische Magnetisierung lässt sich nicht durch eine direkte Proportionalität ausdrücken. (vgl. Skizze rechts)

Die Abhängigkeit der Magnetisierung von der Suszeptibilität

In Permanentmagneten ist eine dauerhafte Magnetisierung vorhanden (siehe auch Ferromagnetismus). In paramagnetischen Materialien ist die Magnetisierung in erster Näherung proportional zur magnetischen Feldstärke (siehe auch curiesches Gesetz) und zeigt in dieselbe Richtung. In diamagnetischen Materialien ist sie ebenfalls in erster Näherung proportional zur magnetischen Feldstärke, zeigt aber in die entgegengesetzte Richtung.

Formelmäßig ist die Magnetisierung also abhängig vom äußeren magnetischem Feld und der magnetischen Suszeptibilität:

$ {\vec {M}}=\chi _{\text{m}}{\vec {H}} $

Die Suszeptibilität ist einheitenlos und kann Werte von -1 bis nahezu unendlich annehmen, was bedeutet, dass die Magnetisierung sogar der magnetischen Flussdichte entgegen gerichtet sein kann.

Magnetisierung eines Nagels

Magnetisierung eines Nagels mit Hilfe eines äußeren Magnetfeldes

Ein Nagel aus Eisen, dessen magnetische Domänen anfänglich zufällig ausgerichtet sind, kann durch ein äußeres Feld magnetisiert werden. Dabei vergrößern sich manche magnetische Domäne auf Kosten benachbarter Domänen und es ergibt sich so in der Summe eine Magnetisierung, die ungefähr parallel zum äußeren Feld verläuft. Diese Änderung der magnetischen Domäne kann z.B. durch externe Stöße oder Vibrationen gesteigert werden. Aufgrund der ferromagnetischen Eigenschaften behält der Nagel seine Magnetisierung teilweise auch noch nach Entfernen des äußeren Feldes bei.[1]

Magnetisierung in der Geologie/Mineralogie

Mineralien und Gesteine können bei ihrer Entstehung auf verschiedene Arten eine bleibende Magnetisierung erhalten, wobei das Magnetfeld der Erde jeweils die Polarisierung vorgibt:

  • Thermisch remanente Magnetisierung (TRM): Die magnetische Ausrichtung der Mineralien in einer Schmelze wird durch Abkühlen unter die Curie-Temperatur fixiert.
  • Chemisch remanente Magnetisierung (CRM): Mineralien, welche durch eine chemische Reaktion (z. B. Oxidation, Reduktion) zu magnetisierbaren Mineralien werden, richten sich bei der Umwandlung aus.
  • Detritisch remanente Magnetisierung (DRM): magnetisierbare Mineralkörner richten sich bei der Sedimentation in der Wassersäule nach dem Magnetfeld der Erde aus und lagern sich mit dieser Ausrichtung auf dem Sediment ab.
  • Postdetritisch remanente Magnetisierung (pDRM): Mineralien richten sich nach der Ablagerung im unverfestigten Sediment aus.

Literatur

  •  Horst Stöcker: Taschenbuch der Physik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4.
  •  Günter Springer: Fachkunde Elektrotechnik. 18. Auflage. Europa-Lehrmittel, Wuppertal 1989, ISBN 3-8085-3018-9.
  •  Hans Fischer: Werkstoffe in der Elektrotechnik. 2. Auflage. Carl Hanser, München, Wien 1982, ISBN 3-446-13553-7.
  •  Horst Kuchling: Taschenbuch der Physik. 4. Auflage. Harri Deutsch, Frankfurt am Main 1982, ISBN 3-87144-097-3.

Siehe auch

Weblinks

Einzelnachweise

  1.  Richard Feynman, Robert Leighton, Matthew Sands: The Feynman Lectures on Physics, Volume II. Addison-Wesley, 2006, ISBN 0-8053-9047-2 (Kapitel 37: Magnetic Materials).

News mit dem Thema Magnetisierung

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.