Magnetostatik

Erweiterte Suche

(Weitergeleitet von Magnetisches Gleichfeld)

Die Magnetostatik ist ein Teilgebiet der Elektrodynamik. Sie behandelt magnetische Gleichfelder, also zeitlich konstante Magnetfelder.

Grundlagen

In der Magnetostatik wird die räumliche Verteilung von Magnetfeldern in der Umgebung von Dauermagneten und von stationären Strömen (Konzept des Stromfadens) untersucht. Ein stationärer Strom ist beispielsweise Gleichstrom in einem elektrischen Leiter. Hierzu gehören neben den einzelnen magnetischen Eigenschaften der Stoffe wie Ferromagnetismus, Diamagnetismus etc. auch das Erdmagnetfeld. Außerdem beinhaltet die Magnetostatik die Kraftwirkung derartig erzeugter Felder auf Magnete und Ströme. Hierzu gehört das Verhalten eines magnetischen Dipols in einem zeitlich konstanten Magnetfeld; beispielsweise das Verhalten einer (frei beweglichen) Magnetnadel im Erdmagnetfeld. Die Grundbegriffe sind der Elektrostatik analog. Der positiven und negativen elektrischen Ladung entspricht Nordpol und Südpol bzw. positive und negative Polstärke eines Magneten. Im Gegensatz zur Elektrostatik können magnetische Polstärken nicht isoliert werden, sondern treten in einem Körper immer zusammen auf.

Veranschaulichung

Obwohl es keine isolierten magnetischen Ladungen (magnetische Monopole) gibt, können magnetostatische Effekte mit einer Analogie zur Elektrostatik veranschaulicht werden, dies wird insbesondere in der Schulphysik benutzt. Dabei betrachtet man einen Stabmagnet der Länge l als zwei entgegensetzte magnetische Ladungen im Abstand l.

Das Analogon zur elektrischen Ladung ist die magnetische Polstärke p, sie ist von der gleichen Dimension wie der magnetische Fluss und wird somit in der Einheit Weber angegeben.

Es gilt dann das Magnetische Kraftgesetz (auch magnetostatisches Kraftgesetz):

$ F={\frac {1}{4\pi \mu _{0}}}{\frac {p_{1}\cdot p_{2}}{r^{2}}} $,

Dabei ist F die Kraft, μ0 die magnetische Feldkonstante und p die magnetische Polstärke.

Feldtheorie

Für zeitlich konstante Felder entkoppeln die Gleichungen für E- und B-Felder. Setzt man in den Maxwellgleichungen alle Zeitableitungen gleich 0, so entstehen Gleichungen, die nicht gleichzeitig E und B enthalten. Die Phänomene der Magnetostatik lassen sich mit folgenden zwei reduzierten Maxwellgleichungen beschreiben:

  1. $ \nabla \cdot {\vec {B}}=0 $
  2. $ \nabla \times {\vec {B}}=\mu {\vec {j}} $

Man führt das Vektorpotential $ {\vec {A}} $ als Hilfsfeld mit folgender Definition ein:

$ {\vec {B}}=\nabla \times {\vec {A}} $

Dadurch wird automatisch die Gleichung $ \nabla \cdot {\vec {B}}=0 $ erfüllt, da die Divergenz eines Rotationsfeldes identisch 0 ist $ \nabla \cdot \left({\nabla \times {\vec {A}}}\right)\equiv 0 $.

$ {\vec {A}} $ ist jedoch nicht eindeutig bestimmt, da $ {\vec {B}} $ invariant ist unter einer Eichtransformation $ \chi $ mit $ {\vec {A}}'={\vec {A}}+\nabla \chi $. D.h. die durch A und A' festgelegten B-Felder sind identisch. Dies ergibt sich aus

$ {\vec {B}}'=\nabla \times {\vec {A}}'=\nabla \times {\vec {A}}+\nabla \times \nabla \chi =\nabla \times {\vec {A}}={\vec {B}} $,

da die Rotation des Gradienten eines Skalarfeldes verschwindet.

Setzt man $ {\vec {B}}=\nabla \times {\vec {A}} $ in die inhomogene Maxwellgleichung (obige Gleichung 2)

$ \mu {\vec {j}}=\nabla \times \nabla \times {\vec {A}}=\nabla \left({\nabla \cdot {\vec {A}}}\right)-\Delta {\vec {A}} $

ein, so ergibt sich mit der Coulomb-Eichung $ \nabla \cdot {\vec {A}}=0 $ die besonders einfache Form:

$ \Delta {\vec {A}}=-\mu {\vec {j}} $

Dies stellt für jede Komponente eine Poisson-Gleichung dar, die durch

$ {\vec {A}}({\vec {r}})={\frac {\mu _{0}}{4\pi }}\int d^{3}r'{\frac {{\vec {j}}({\vec {r}}\,')}{|{\vec {r}}-{\vec {r}}\,'|}} $

gelöst wird.

Wendet man die Rotation auf A an so erhält man das Biot-Savart-Gesetz für das physikalisch relevante B-Feld

$ {\vec {B}}\left({\vec {r}}\right)=\nabla _{\vec {r}}\times {\vec {A}}\left({\vec {r}}\right)={\frac {\mu _{0}}{4\pi }}\int {\nabla _{\vec {r}}\times {\frac {{\vec {j}}\left({{\vec {r}}\,'}\right)}{\left|{{\vec {r}}-{\vec {r}}\,'}\right|}}}d^{3}r'={\frac {\mu _{0}}{4\pi }}\int {\left({\nabla _{\vec {r}}{\frac {1}{\left|{{\vec {r}}-{\vec {r}}\,'}\right|}}}\right)\times }{\vec {j}}\left({{\vec {r}}\,'}\right)d^{3}r'={\frac {\mu _{0}}{4\pi }}\int {{\vec {j}}\left({{\vec {r}}\,'}\right)\times {\frac {{\vec {r}}-{\vec {r}}\,'}{\left|{{\vec {r}}-{\vec {r}}\,'}\right|^{3}}}d^{3}r'} $

Für einen Stromfaden geht $ {\vec {j}}\left({{\vec {r}}\,'}\right)d^{3}r' $ zu $ Id{\vec {s}}\,' $ über:

$ {\vec {B}}\left({\vec {r}}\right)={\frac {\mu _{0}}{4\pi }}I\int {d{\vec {s}}\,'\times {\frac {{\vec {r}}-{\vec {r}}\,'}{\left|{{\vec {r}}-{\vec {r}}\,'}\right|^{3}}}} $

Magnetostatische Felder

Magnetostatische Felder existieren innerhalb gleichstromführender Leiter. Sie sind quellenfrei und es gibt keine magnetischen Ladungen,

$ \mathrm {div} \;B(r)=0 $.

Die Ursache magnetostatischer Felder sind bewegte elektrische Ladungen bzw. ihnen äquivalente Gleichströme mit der Wirbeldichte:

$ \mathrm {rot} \;H(r)=J_{L}(r) $.

Literatur

  • Wolfgang Demtröder: Experimentalphysik. Bd.2: Elektrizität und Optik. Springer, Berlin 2004, ISBN 3-540-20210-2
  • Wolfgang Nolting: Grundkurs Theoretische Physik 3: Elektrodynamik. Springer, Berlin 2007, ISBN 978-3-540-71251-0
  • Adolf J. Schwab: Begriffswelt der Feldtheorie, Springer Verlag, ISBN 3-540-42018-5

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.