Jasmonsäure

Erweiterte Suche

Strukturformel
Strukturformel der Jasmonsäure
Allgemeines
Name Jasmonsäure
Andere Namen
  • JA
  • (−)-Jasmonsäure
  • (1R,2R)-3-Oxo-2-pent-2-enyl- cyclopentanessigsäure
Summenformel C12H18O3
CAS-Nummer 6894-38-8
PubChem 5281166
Eigenschaften
Molare Masse 210,27 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

160 °C [1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Jasmonsäure ist ein ubiquitäres Phytohormon und Grundstruktur der Gruppe der Jasmonate, deren Funktion die Regulierung des Wachstums und der Alterung vor allem von Blättern und Wurzeln der Pflanzen ist. Jasmonsäure spielt in einer Vielzahl von Pflanzen eine entscheidende Rolle als Elicitor-Signal bei der Abwehr von biotischem und abiotischem Stress. Wichtigstes Derivat ist ihr Methylester, das Methyljasmonat.

Biosynthese

Der Biosyntheseweg von Jasmonaten konnten Brady Vick und Don Zimmerman aufklären.[3][4] So wird Jasmonsäure aus α-Linolensäure gebildet. Die Synthese erfolgt in zwei räumlich getrennten Teilschritten. Der erste Schritt wird von den in der chloroplastidären Membran lokalisierten Enzymen 13-Lipoxygenase (13-LOX), 13-Allenoxidsynthase (13-AOS) und Allenoxidcyclase (AOC) katalysiert. Dabei entsteht das Zwischenprodukt cis-(+)-12-Oxophytodiensäure (OPDA). OPDA oder dessen CoA-Ester wird im zweiten Teilschritt zu den Peroxisomen weitergeleitet. Dort wird der Cyclopentanring von OPDA reduziert. Anschließend katalysieren die Enzyme der β-Oxidation der Fettsäuren auch die Carboxylseitenkette von OPDA und es entsteht (+)-7-iso-Jasmonsäure beziehungsweise das Diastereomer (−)-Jasmonsäure.[5]

Aus α-Linolensäure (1) wird durch 13-Lipoxygenase (13-LOX) (A) zu 13(S)-Hydroperoxylinolensäure (2) peroxidiert. Daraus entsteht ein Epoxid, das 12,13(S)-Epoxy-9(Z),11(E),15(Z)-oktadekatriensäure (3), was die 13-Allenoxidsynthase (13-AOS) (B) katalysiert. Eine Allenoxidcyclase (AOC) (C) zyklisiert das Epoxid schließlich zu 12-oxo-Phytodienonsäure (OPDA) (4). Im Verlauf weiterer Reaktionen bildet sich (+)-7-iso-Jasmonsäure (5a), was zur stabilen (−)-Jasmonsäure (5b) epimerisiert wird.

Reaktionen

Durch Reduktion, beispielsweise mittels Natriumborhydrid, kann Jasmonsäure zur Synthese von Cucurbinsäure eingesetzt werden.[6] Die Reduktion verläuft nur mit schwacher Diastereoselektivität.

Reduktion von Jasmonsäure zu Cucurbinsäure

Quellen

  1. Datenblatt von (+/−)-Jasmonsäure
  2. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  3. Vick, BA. und Zimmerman, DC. (1984): Biosynthesis of Jasmonic Acid by Several Plant Species. In: Plant Physiol. 75(2); 458–461; PMID 16663643; PDF (freier Volltextzugriff, engl.)
  4. Vick, BA. und Zimmerman, DC. (1987): Pathways of Fatty Acid Hydroperoxide Metabolism in Spinach Leaf Chloroplasts. In: Plant Physiol. 85(4); 1073–1078; PMID 16665806; PDF (freier Volltextzugriff, engl.)
  5. Jasmonat – Wirkungsweise
  6. W. Dathe, C. Schindler, G. Schneider, J. Schmidt, A. Porzel, E. Jensen, I. Yamaguchi; Phytochemistry 1991, 30, (6), 1909–1914.

Literatur

  • Ushio Sankawa, Derek H. R. Barton, Koji Nakanishi, Otto Meth-Cohn: Comprehensive Natural Products Chemistry: Polyketides and Other Secondary Metabolites Including Fatty Acids and Their Derivatives, ISBN 0-08-043153-4.
  • C. Delker, I. Stenzel, B. Hause, O. Miersch, I. Feussner, C. Wasternack: Jasmonate biosynthesis in Arabidopsis thaliana—enzymes, products, regulation. Plant biology (Stuttgart, Germany), 2006 May;8(3):297–306

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?