Phytohormon

Erweiterte Suche

Phytohormone (griechische Einzahl φυτοορμόνη, fitoormóni, „Pflanzenhormon“) sind biochemisch wirkende pflanzeneigene (endogene) organische Verbindungen, die als Botenstoffe (sog. Signalmoleküle) Wachstum und Entwicklung der Pflanzen steuern und koordinieren. Da sie nicht alle Kriterien der eigentlichen Hormone erfüllen, können sie auch als Wachstumsregulatoren bezeichnet werden.[1] Neben den echten Phytohormonen gibt es zahlreiche andere sekundäre Pflanzeninhaltsstoffe, die ebenfalls wachstumsregulatorische Wirkung zeigen, zum Beispiel einige phenolische Verbindungen und Steroide. Diese gehören jedoch definitionsgemäß nicht zu den Pflanzenhormonen.

Vorkommen und Nachweis

Phytohormone kommen in allen höheren Pflanzen vor. Pflanzenhormone werden nur in geringen Mengen gebildet. Der Gehalt an den einzelnen Pflanzenhormonen hängt vom jeweiligen Pflanzenorgan und dessen Entwicklungszustand ab. Häufig ist nicht die absolute Konzentration entscheidend, sondern das Mengenverhältnis der Phytohormone zueinander. Nachweis und Bestimmung von Phytohormonen erfolgen durch verschiedenartige empfindliche Biotestverfahren, durch physikalisch-chemische Methoden und immunologische Analysenverfahren. Bedeutende Gehalte an Phytohormonen finden sich nach bisherigem Kenntnisstand z. B. bei Hopfen, Rotklee, Sojabohnen, Kichererbsen und Yamswurzel.

Ethylen, ein gasförmiges Phytohormon, das zum Reifen von Früchten beiträgt.[2]

Wirkungsweise

Die Pflanzenhormone werden in der Pflanze vom Entstehungs- zu einem spezifischen Wirkungsort transportiert, entweder von Zelle zu Zelle (z. B. Auxine), über die Leitungsbahnen (z. B. Cytokinine), oder über den Gasraum zwischen den Zellen (Ethylen).

Sie sind damit sozusagen das Nervensystem der Pflanze, indem sie Informationen zwischen den pflanzlichen Geweben austauschen und auf äußere ökologische Einflüsse eine spezifische Reaktion bewirken. Pflanzenhormone regulieren im engen wechselseitigen Zusammenspiel die pflanzlichen Wachstums- und Entwicklungsprozesse und können diese auslösen, hemmen oder fördern. Sie steuern und koordinieren auf diese Weise das Wachstum von Wurzel, Spross und Blatt, die Entwicklung von Samen und Frucht, die Seneszenz und Abszission, die Apikaldominanz, Ruhepausen von Pflanzen, den Gravitropismus und Phototropismus und viele andere Prozesse.

Entstehungsorte und der auf chemische Wechselwirkung beruhende Mechanismus sind noch wenig erforscht. Angriffsort der Phytohormone sind hormonspezifische Rezeptorproteine. Regulierung der Produktion: Die Pflanzenhormone werden entweder

  • durch verschiedene enzymatisch gesteuerte Abbaureaktionen irreversibel inaktiviert,

oder

  • durch Konjugatbildung mit Monosacchariden oder Aminosäuren in biologisch inaktive Speicherformen überführt. Diese Konjugate haben als reversible (wieder aktivierbare) Deaktivierungsprodukte eine wichtige Funktion im Stoffwechsel der Pflanze.

Während Phytohormone in Gefäßpflanzen ein breites Wirkungsspektrum haben (die sogenannte pleiotrope Wirkung), sind insbesondere für Auxine, Cytokinine und Abscisinsäure sehr spezifische Effekte auf die Differenzierung des Protonemas der Laubmoose beschrieben.[3] Bildungsort und Wirkungsort sind oft nicht eindeutig voneinander getrennt.

Einteilung

Chemisch sind Phytohormone keine einheitliche Stoffklasse. Sie werden unterteilt in fünf Gruppen:

  • die vorwiegend wachstumsfördernden Auxine, Cytokinine und Gibberelline,
  • sowie die hemmenden Phytohormone Abscisinsäure und Ethylen.

Zudem spielen Brassinosteroide, Jasmonate, Salizylate und Systemin, als einziges Peptidhormon, eine Rolle. Polyamine zählen nicht zu den Phytohormonen, da sie nicht ausschließlich Signalfunktion haben, in der Zelle immer vorhanden sind, als direkte Reaktionspartner agieren (gehen verändert aus der Reaktion hervor, irreversibel) und in hohen Konzentrationen (mM) wirksam sind.

Anwendung

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
  • Pflanzenhormone und wirkungsverwandte Wachstumsregulatoren finden in der Land- und Forstwirtschaft sowie im Gartenbau eine breite Anwendung; siehe Gibberellinsäure.
  • Auch in der Medizin werden Pflanzenhormone eingesetzt (v.a. bei Menstruationsbeschwerden, im Klimakterium).
  • Durch Begasung mit Ethylen beschleunigt man das Reifen unreifer Früchte wie Bananen, Orangen und Zitronen in geschlossenen Lagerhallen. Ebenfalls dient es zur Induktion der Blütenbildung in geschlossenen Gewächshäusern. Zur Beschleunigung des Reifeprozesses von Früchten reichen bereits nanomolekulare Ethylen-Konzentrationen. Ebenso kann man durch kontinuierliches Entfernen des Ethylens aus Lagerhallen für Früchte deren Frische erhalten.[4]

Siehe auch

Quellenangaben

  1. v. Sengbusch, Seite der Uni-Hamburg
  2. Joachim Buddrus: Grundlagen der Organischen Chemie, 4. Auflage, de Gruyter Verlag, Berlin, 2011, S. 151−153, ISBN 978-3-11-024894-4.
  3. Eva L. Decker, Wolfgang Frank, Eric Sarnighausen, Ralf Reski (2006): Moss systems biology en route: Phytohormones in Physcomitrella development. Plant Biology 8, 397–406, doi:10.1055/s-2006-923952.
  4. Otto-Albrecht Neumüller (Herausgeber): Römpps Chemie Lexikon, Frank’sche Verlagshandlung, Stuttgart, 1983, 8. Auflage, S. 1203−1205, ISBN 3-440-04513-7.

Literatur

  • Heide Theiß, Bruno Hügel: Experimente zur Entwicklungsbiologie der Pflanzen - Phytohormone; Quelle & Meyer, Wiesbaden 1995, ISBN 3-494-01242-3

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

17.01.2022
Quantenphysik | Teilchenphysik
Ladungsradien als Prüfstein neuester Kernmodelle
Ein internationales Forschungsprojekt hat die modernen Möglichkeiten der Erzeugung radioaktiver Isotope genutzt, um erstmals die Ladungsradien entlang einer Reihe kurzlebiger Nickelisotope zu bestimmen.
13.01.2022
Sonnensysteme | Planeten | Elektrodynamik
Sauerstoff-Ionen in Jupiters innersten Strahlungsgürteln
In den inneren Strahlungsgürteln des Jupiters finden Forscher hochenergetische Sauerstoff- und Schwefel-Ionen – und eine bisher unbekannte Ionenquelle.
12.01.2022
Schwarze Löcher | Relativitätstheorie
Die Suche nach einem kosmischen Gravitationswellenhintergrund
Ein internationales Team von Astronomen gibt die Ergebnisse einer umfassenden Suche nach einem niederfrequenten Gravitationswellenhintergrund bekannt.
11.01.2022
Exoplaneten
Ein rugbyballförmiger Exoplanet
Mithilfe des Weltraumteleskops CHEOPS konnte ein internationales Team von Forschenden zum ersten Mal die Verformung eines Exoplaneten nachweisen.
07.01.2022
Optik | Quantenoptik | Wellenlehre
Aufbruch in neue Frequenzbereiche
Ein internationales Team von Physikern hat eine Messmethode zur Beobachtung licht-induzierter Vorgänge in Festkörpern erweitert.
06.01.2022
Elektrodynamik | Quantenphysik | Teilchenphysik
Kernfusion durch künstliche Blitze
Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar.
05.01.2022
Elektrodynamik | Teilchenphysik
Materie/Antimaterie-Symmetrie und Antimaterie-Uhr auf einmal getestet
Die BASE-Kollaboration am CERN berichtet über den weltweit genauesten Vergleich zwischen Protonen und Antiprotonen: Die Verhältnisse von Ladung zu Masse von Antiprotonen und Protonen sind auf elf Stellen identisch.
04.01.2022
Milchstraße
Orions Feuerstelle: Ein neues Bild des Flammennebels
Auf diesem neuen Bild der Europäischen Südsternwarte (ESO) bietet der Orion ein spektakuläres Feuerwerk zur Einstimmung auf die Festtage und das neue Jahr.
03.01.2022
Sterne | Elektrodynamik | Plasmaphysik
Die Sonne ins Labor holen
Warum die Sonnenkorona Temperaturen von mehreren Millionen Grad Celsius erreicht, ist eines der großen Rätsel der Sonnenphysik.
30.12.2021
Sonnensysteme | Planeten
Rekonstruktion kosmischer Geschichte kann Eigenschaften von Merkur, Venus, Erde und Mars erklären
Astronomen ist es gelungen, die Eigenschaften der inneren Planeten unseres Sonnensystems aus unserer kosmischen Geschichte heraus zu erklären: durch Ringe in der Scheibe aus Gas und Staub, in der die Planeten entstanden sind.