Flammenfärbung

(Weitergeleitet von Flammprobe)
Kräftig grüne Alkylboratflamme.

Die Flammenfärbung, auch Flammprobe genannt, ist eine Methode zur Analyse von chemischen Elementen oder deren Ionen (Nachweisreaktion). Die Methode beruht darauf, dass die Elemente oder Ionen in einer farblosen Flamme Licht spezifischer Wellenlängen abgeben, das für jedes Element charakteristisch ist. Die Flammenfärbung entsteht durch Energieumwandlung von Wärmeenergie zu Strahlungsenergie. Die Umwandlung kommt durch Valenzelektronen zustande, die durch die Wärmeenergie in einen angeregten Zustand gehoben werden und unter der Abgabe von Licht wieder zurückfallen. Stoffe, mit denen Flammenfärbung möglich ist, finden aufgrund dieser Eigenschaft in der Pyrotechnik Anwendung.

Bei der Flammenfärbung wird die Stoffprobe meist einfach auf einem Platindraht oder einem Magnesiastäbchen in die farblose Flamme eines Bunsenbrenners gehalten. Aufgrund der Farbe kann nun auf die Ionen in der Probe rückgeschlossen werden, allerdings überdeckt die sehr intensive gelbe Flammenfärbung des Natriums oft alle anderen Flammenfärbungen. Mit Sicherheit kann nur mit Hilfe eines Spektroskops entschieden werden, welche Elemente in der Probe vorliegen, zumal sich z. B. die Flammenfärbungen von Kalium und Rubidium recht ähnlich sind.

Zu unterscheiden ist die Flammenfärbung von der Lichtabgabe der Edelgase, die auch auf einem angeregten Zustand basiert, welche aber durch Strom, nicht durch eine Flamme herbeigeführt wird.

Erklärung der Flammenfärbung

Grafische Darstellung der Elektronen-Anhebung und dem Zurückfallen am Valenzschalenmodell

Alle Elemente senden bei hohen Temperaturen Licht aus. Doch für Elemente, die eine Flammenfärbung aufweisen, geschieht dies schon bei den Temperaturen, die in einer Flamme herrschen.

Die äußersten Elektronen eines Atoms werden durch Zufuhr von Wärmeenergie (die in diesem Fall durch eine Verbrennung entsteht) auf ein vom Atomkern weiter entferntes, nicht von Elektronen besetztes Energieniveau – in einen angeregten Zustand – gehoben. Diese Elektronen besitzen nun eine höhere potentielle Energie. Die negativ geladenen Elektronen fallen aber meist in Sekundenbruchteilen wieder auf das energieärmere Ausgangs-Energieniveau zurück. Die beim Zurückfallen frei werdende Energie wird als Photon (Lichtteilchen) abgegeben. Man spricht von einem Quant. Es ist durch eine genau definierte Energie und somit auch mit einer einzigen Wellenlänge gekennzeichnet.

Das Zurückfallen der Elektronen auf energieärmere Energieniveaus kann auch stufenweise erfolgen. Bei jedem Zurückfallen dieses Elektrons auf ein energieärmeres Energieniveau gibt es nun Licht einer ganz bestimmten Wellenlänge (Farbe), und damit einer ganz bestimmten Energie, ab.

Farbe der Flammenfärbung

Weitere Flammenfärbungen:

Die freigegebene Lichtenergie hängt von der Differenz der Energieniveaus $ \Delta E $ ab. Diese Differenz ist für jedes Element unterschiedlich. Die Energie der Photonen bestimmt ihre Wellenlänge $ \lambda $ und damit die Farbe.

Weist ein Element eine spezifische Flammenfärbung auf, dann weisen auch viele Verbindungen seiner Ionen diese Flammenfärbung auf (Beispiel: Bariumsulfat weist eine grünliche Flammenfärbung auf, Bariumphosphat nicht). Sehr viele Elemente senden bei hohen Temperaturen sichtbare Spektrallinien aus. Einige Elemente wurden sogar nach der Farbe ihrer bei der Flammenfärbung beobachteten Spektrallinien benannt: Caesium (lateinisch: himmelblau) , Rubidium (lateinisch: dunkelrot) und Indium (indigoblaue Spektrallinie).

Moderne Techniken

Bessere Möglichkeiten als die klassische Flammenfärbung mit Hilfe des Auges bieten die spektroskopischen Verfahren der Atomspektroskopie, die eine Art Weiterentwicklung dieser mit Hilfe von Messinstrumenten darstellen. Das Auge wird hier durch das Spektrometer ersetzt, welches die Lage der Spektrallinien sehr viel besser auflöst, sowie auch die nicht sichtbaren Bereiche des elektromagnetischen Spektrums je nach Spektroskopieart (z.B. IR- oder UV/VIS-Spektroskopie) zur Analyse nutzt. Außerdem ist es weit besser als das Auge in der Lage, die Stärke der Spektrallinien zu bestimmen, wodurch eine quantitative Analyse möglich wird.

Literatur

  • W. Biltz, W. Fischer, Ausführung qualitativer Analysen anorganischer Stoffe, 16. Auflage, Harri Deutsch, Frankfurt am Main, 1976.
  • G. Jander, E. Blasius, Einführung in das anorganisch chemische Grundpraktikum, 14. Auflage, S. Hirzel Verlag, Stuttgart, 1995, ISBN 3-7776-0672-3

Weblinks

 Commons: Flammenfärbung – Album mit Bildern, Videos und Audiodateien

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.