Flammenphotometrischer Detektor

Der Flammenphotometrische Detektor (FPD) ist ein Detektor für Phosphor- und Schwefelverbindungen, der überwiegend in Verbindung mit Gaschromatographen (GC) oder als Brandmelder eingesetzt wird.

Messprinzip

Der FPD nutzt das bei der Verbrennung von Phosphor- und Schwefelverbindungen freiwerdende Licht bestimmter Wellenlängen. Die Verbrennung der Substanz geschieht wie beim Flammenionisationsdetektor in einer Knallgasflamme. Die so angeregten Schwefel- und Phosphor-Atome emittieren Licht mit charakteristischer Wellenlänge (394 nm für Schwefel bzw. 526 nm für Phosphor).

Technische Verwendung

Brandmelder

Der erste Flammenphotometrische Detektor (FPD) wurde in den 1950er Jahren von D. W. Grant entwickelt. Die selektive Messung geschieht mit einem entsprechenden Filter mit Hilfe eines Photomultipliers. Ein FPD ist sehr empfindlich und arbeitet selektiv. Das Prinzip gilt als bester Schwefeldetektor.

GC-Detektor

In den 1960er Jahren wurde dann die Kopplung GC/FPD entwickelt. Die Detektion erfolgt bei der Verwendung als GC-Detektor ebenfalls mittels eines Photomultipliers mit vorgeschaltetem Filter. Die Nachweisgrenzen liegen für Phosphor bei ca. 10 pg, für Schwefel liegen sie bei > 100 pg. Der Detektor hat für Schwefel einen nicht-linearen Response.

Mit dem FPD können mit entsprechenden Filtern auch Halogenkohlenwasserstoffe und zinnorganische Verbindungen detektiert werden. Eine Weiterentwicklung des FPD ist der PFPD (Pulsed Flame Photometric Detector)

Literatur

  • Brody, Sam S.; Chaney, John E.: Flame photometric detector: the application of a specific detector for phosphorus and for sulfur compounds - sensitive to subnanogram quantities. Journal of gas chromatography 4, 1966

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.03.2021
Sonnensysteme - Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik - Optik - Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.