Flammenionisationsdetektor

Der Flammenionisationsdetektor – kurz FID – ist ein Detektor für organische Verbindungen, der überwiegend in Verbindung mit Gaschromatographen (GC) eingesetzt wird. Weitere Einsatzgebiete des FID sind die Abwasserüberwachung auf flüchtige kohlenwasserstoffhaltige Substanzen (mit vorgelagertem Stripping) sowie die Raum- und Außenluftüberwachung auf Kohlenwasserstoffe.

Funktionsprinzip ist die Messung der Leitfähigkeit einer Knallgasflamme (das Brenngas ist Wasserstoff) zwischen zwei Elektroden. Zu analysierende Substanzen werden mit einem Trägergasstrom in die Flamme transportiert und dort thermisch ionisiert. Die bei der Ionisierung freiwerdenden Elektronen werden aufgefangen (mittels eines Gitters, das um die Flamme angebracht ist) und durch einen angeschlossenen Schreiber oder ein Datensystem als Peak aufgezeichnet.

Der FID ist der in der Gaschromatographie am meisten verwendete Detektor, da er Robustheit mit hoher Empfindlichkeit verbindet. Ein FID ist bis zu 1000 Mal so empfindlich wie ein Wärmeleitfähigkeitsdetektor. Zudem ist das Detektorsignal über einen weiten Konzentrationsbereich linear proportional zur Menge des Analyten (genauer gesagt, zu dessen Kohlenstoffgehalt). Deshalb kann die Konzentration eines Kohlenwasserstoffs aus dem Signal ohne Kalibrierung abgeschätzt werden, so dass der Detektor gut zur Quantifizierung verwendet werden kann.

Einige organische Substanzen (z. B. Ameisensäure, Acetaldehyd) weisen allerdings eine schlechtere Erfassbarkeit auf, da sie bereits vorher in der Säule thermisch zersetzt werden (z. B. Ameisensäure, die zu Kohlenstoffmonooxid und Wasser zerfällt). Substanzen, die wenig oder gar nicht ansprechen, sind:

Edelgase, H2, N2, Stickstoffoxide, CO, CCl4 oder andere halogenierte Verbindungen, Siliciumhalogenide, CO2, H2O, CS2, NH3, O2
Detektor WLD ECD FID NPD MS
Nachweisgrenze 1 µg 1 pg 1 ng 10 pg bis zu 1 fg

Die Nachweisgrenze ist neben der Dosiermenge auch von der zu analysierenden Substanz abhängig.

Im Gegensatz zum ECD oder WLD wirkt der FID destruktiv. Das bedeutet, dass die zu analysierende Probe (hier durch Verbrennung) zerstört wird.

Verwandte Geräte:

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.