Dimensionslose Größe

(Weitergeleitet von Dimensionslos)

Eine dimensionslose Größe (richtiger: Größe der Dimension 1) ist eine physikalische Größe, die durch eine reine Zahl ohne Maßeinheit angegeben werden kann. Auch für solche Größen werden jedoch der Deutlichkeit wegen oft Einheiten verwendet, siehe Hilfsmaßeinheiten.

In der vom Deutschen Institut für Normung (DIN) herausgegebenen deutschen Übersetzung des VIM, 3. Ausgabe 2007, wird die Benennung „dimensionslose Größe“ als „im Deutschen veraltet“ bezeichnet. Empfohlen werden stattdessen die Bezeichnungen „Größe der Dimension Eins“ und „Größe der Dimension Zahl“.

Der hier mit Dimension gemeinte Begriff ist Dimension (Größensystem), nicht Dimension (Mathematik) wie etwa in „dreidimensionaler Raum“.

Beispiele

Beispiele für dimensionslose Größen sind

  • Anzahlen, auch, wenn sie in einem Zählmaß wie beispielsweise Dutzend angegeben sind
  • Angaben in Verhältniseinheiten wie beispielsweise Prozent, Promille, ppm
  • Ebene Winkel und Raumwinkel (SI-Hilfsmaßeinheit Radiant bzw. Steradiant)
  • Verhältniszahlen, d. h. Quotienten aus zwei dimensionsgleichen Größen, z. B. die Avogadro-Zahl
  • logarithmierte Verhältniszahlen, wie Bel, Neper, Phon
  • dimensionslose Kennzahlen (auch als Kenngrößen bezeichnet) wie die Mach-Zahl
  • Wahrscheinlichkeiten
  • Quantenzahlen

Verhältniszahlen sind bezogene Größen, deren Bezug jeweils von derselben Größenart ist (z. B. Wirkungsgrad).

Wichtig sind die dimensionslosen Kennzahlen (Kenngrößen) der Fluiddynamik und Thermohydraulik als intensive Größen, anhand derer man das Systemverhalten vorhersagen kann bzw. die einen Vergleich zwischen verschiedenen Systemen (unterschiedlicher Abmessung) ermöglichen. Hierzu zählt zum Beispiel die Reynolds-Zahl, die die Strömungsqualität (laminar/turbulent) charakterisiert.

Ein Beispiel aus einem anderen Gebiet ist die Sommerfeldsche Feinstrukturkonstante, die sich aus elektrischer Elementarladung, Planckschem Wirkungsquantum und der Lichtgeschwindigkeit zusammensetzt. Ihr Wert beträgt etwa 1/137. Diese Konstante wurde von Arnold Sommerfeld 1916 eingeführt, um die durch Magnetfelder bedingte Feinstrukturaufspaltung von Spektrallinien berechnen zu können.

Benennung

Nach DIN 5485 Benennungsgrundsätze für physikalische Größen; Wortzusammensetzungen mit Eigenschafts- und Grundwörtern, die Regeln zur Neubenennung von physikalischen Größen enthält, für die noch kein Name vorliegt, ist für dimensionslose Größen vorgesehen:

  • -zahl
  • -beiwert
  • -faktor
  • -grad
  • -quote
  • -verhältnis
  • -anteil

Im wissenschaftlichen und technischen Alltag gibt es weiterhin zahlreiche Bezeichnungen, die diesen Kriterien nicht folgen, und dimensionslose physikalische Größen lassen sich oft, aber nicht immer, an der Endung -zahl erkennen. Auch die Endung -koeffizient bezeichnet manchmal, aber nicht immer eine dimensionslose Größe. Beispiele:

Gebräuchlich für die Namensgebung dimensionsloser Größen ist außerdem die Endung

  • -modul

Theoretischer Hintergrund

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.

In der Metrologie hat eine Größe die Dimension 1, wenn sie keiner Dimension des jeweils gewählten Größensystems zugeordnet ist. Dies zeigt sich z. B. daran, dass bei der Darstellung der entsprechenden Dimension als Potenzprodukt aus den Basisdimensionen jeder Dimensionsexponent null ist. Dass eine Größe keiner Dimension angehört, kann prinzipiell drei Gründe haben:

  1. sie ist der Quotient zweier Größen derselben Dimension
  2. sie ist eine Zahl, aber nicht Quotient zweier Größen derselben Dimension
  3. sie wurde noch nicht per Definition einer Dimension zugeordnet

Beispiel: In einem Größensystem mit nur den zwei Basisdimensionen Länge $ L $ und Masse $ M $ hat die Länge die Dimension $ L^1 \cdot M^0 = L $.

  1. Eine Größe, die als Quotient aus zwei Größen der Dimension $ L $ definiert ist, hat dann immer die Dimension $ L / L = 1 $.
  2. Eine Zeitspanne hätte dann zunächst die Dimension $ L^0 \cdot M^0 = 1 $. Durch eine zusätzliche Definition könnte sie jedoch dimensionsbehaftet gemacht werden, z. B. durch Zuordnung zur Dimension $ L^3 $ oder zu einer neu eingeführten Basisdimension Zeit $ T $

Grundsätzlich hängt es von der für ein Größensystem gewählten Basis ab, welche abgeleiteten Größen welche Dimension haben, und somit auch, welche Größen (außer den Quotienten dimensionsgleicher Größen) die Dimension 1 haben. So sind in elektrostatischen cgs-Systemen elektrische Kapazität und Länge von gleicher Dimension. Jeder Quotient dieser Größen erhält daher die Dimension 1.

Da man gemäß der Relativitätstheorie Zeit und Länge als ein und dieselbe Größenart ansehen kann, lässt sich auch die Geschwindigkeit als dimensionslose Verhältnisgröße betrachten. Dies geschieht in System der Natürlichen Einheiten, das in manchen Teilgebieten der Physik zum Einsatz kommt. Im SI-System sind dagegen Zeit und Länge getrennte Basisgrößen, und die Geschwindigkeit als ihr Quotient hat die Einheit $ \mathrm{m}/\mathrm{s} $.

Siehe auch

  • Dimensionsanalyse

Literatur

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

28.04.2021
Galaxien - Sterne
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.