Diffusionskoeffizient

Der Diffusionskoeffizient, auch Diffusionskonstante oder Diffusivität genannt, dient in den Fickschen Gesetzen zur Berechnung des thermisch bedingten Transports eines Stoffes aufgrund der zufälligen Bewegung der Teilchen. Dabei kann es sich um einzelne Atome in einem Feststoff oder um Teilchen in einem Gas oder einer Flüssigkeit handeln. Der Diffusionskoeffizient ist daher ein Maß für die Beweglichkeit der Teilchen und lässt sich aus der in einer bestimmten Zeit zurückgelegten Wegstrecke ermitteln.

Zur Angabe des Diffusionskoeffizienten gehört immer die Angabe, welcher Stoff in welchem Stoff diffundiert sowie als wichtigste Einflussgröße die Temperatur. Die SI-Einheit des Diffusionskoeffizienten ist m2s−1.

Diffusionskoeffizienten in Gasen

Beispiele für Diffusionskoeffizienten in Gasen (bei 1 atm)
System Temperatur in °C Diffusionskoeffizient in m2s−1
LuftSauerstoff 0 1,76 × 10−5
Luft – Kohlendioxid 8,9 1,48 × 10−5
44,1 1,77 × 10−5
Wasserstoff - Stickstoff 24,1 7,79 × 10−5
Diffusionskoeffizienten in Gasen[1] sind stark abhängig von Temperatur und Druck. In erster Näherung gilt, dass eine Verdopplung des Druckes zur Halbierung des Diffusionskoeffizienten führt.

Der Diffusionskoeffizient folgt gemäß der Chapman-Enskog-Theorie der Gesetzmäßigkeit[1]

$ D=\frac{1{,}86 \cdot 10^{-3}T^{3/2}\sqrt{1/M_1+1/M_2}}{p\sigma_{12}^2\Omega} $
  • D – Diffusionskoeffizient (cm2/s)
  • T – Temperatur (K)
  • M – molare Masse (g/mol)
  • p – Druck (atm)
  • $ \sigma_{12}=\frac{1}{2}(\sigma_1+\sigma_2) $ – (mittlerer) Kollisionsdurchmesser (Werte tabelliert[2]) (Å)
  • Ω – Kollisionsintegral abhängig von der Temperatur (Werte tabelliert[2]) (−)

für zwei gasförmige Stoffe (Indizes 1 und 2).

Dieser Zusammenhang vereinfacht sich für die Selbstdiffusion (d.h. im Falle dass nur eine Teilchensorte vorhanden ist) zu [3]

$ D = \frac{1}{3} \bar v l = \frac{2}{3} \frac{1}{nd^2}\sqrt{\frac{k_\mathrm{B} T}{\pi^3m}} $
  • $ \bar v $ – mittlere thermische Geschwindigkeit der Teilchen (m·s−1)
  • lmittlere freie Weglänge (m)
  • n – Teilchenzahldichte (1/m3)
  • d – Teilchendurchmesser (m)
  • kBBoltzmann-Konstante (J·K−1)
  • T – Temperatur (K)
  • π – Pi
  • m - Molekülmasse (kg).

Empirische Näherungsformeln zur Berechnung von Diffusionskoeffizienten in Gasen finden sich in entsprechenden Standardwerken.

Diffusionskoeffizienten in Flüssigkeiten

Beispiele für Diffusionskoeffizienten in Wasser (bei unendlicher Verdünnung und 25 °C)
Stoff Diffusionskoeffizient in m2s−1
Sauerstoff 2,1 × 10−9
Schwefelsäure 1,73 × 10−9
Ethanol 0,84 × 10−9

Diffusionskoeffizienten in Flüssigkeiten[1] betragen i. d. R. etwa ein Zehntausendstel von Diffusionskoeffizienten in Gasen. Sie werden durch die Stokes-Einstein-Gleichung[4] beschrieben:

$ D = \frac{k_\mathrm{B} T}{6\pi \eta R_0} $

Auf dieser Gleichung basieren viele empirische Korrelationen.

Da die Viskosität des Lösungsmittels eine Funktion der Temperatur ist, ist die Abhängigkeit des Diffusionskoeffizienten von der Temperatur nichtlinear.

Diffusionskoeffizient in Feststoffen

Beispiele für Diffusionskoeffizienten in Feststoffen
System Temperatur in °C Diffusionskoeffizient in m2s−1
Wasserstoff in Eisen 10 1,66 × 10−13
50 11,4 × 10−13
100 124 × 10−13
Kohlenstoff in Eisen 800 15 × 10−13
1100 450 × 10−13
Gold in Blei 285 0,46 × 10−13

Diffusionskoeffizienten in Feststoffen[1] sind i. d. R. mehrere tausend Mal kleiner als Diffusionskoeffizienten in Flüssigkeiten.

Für die Diffusion in Festkörpern sind Sprünge zwischen verschiedenen Gitterplätzen erforderlich. Dabei müssen die Teilchen eine Energiebarriere E überwinden, was bei höherer Temperatur leichter möglich ist als bei niedrigerer. Dies wird durch den Zusammenhang[5]:

$ D = D_0 \cdot \exp\left(-\frac{E}{RT}\right) $

beschrieben.

D0 lässt sich näherungsweise berechnen als:

$ D_0=\alpha_0^2N\omega $
  • α0 – Abstand der Atome (m)
  • N – Anteil der vakanten Gitterplätze (-)
  • ω – Sprungfrequenz (s−1)

Allerdings empfiehlt es sich insbesondere bei Diffusionskoeffizienten in Feststoffen, diese experimentell zu bestimmen.

Effektiver Diffusionskoeffizient

Der effektive Diffusionskoeffizient[6] beschreibt Diffusion durch den Porenraum poröser Medien. Er ist eine makroskopische Größe, da er nicht einzelne Poren sondern den gesamten Porenraum betrachtet. Der Porenraum wird dabei durch die für den Transport verfügbare Porosität, die Tortuosität ("Gewundenheit") und die Konstriktivität beschrieben:

$ D_e=\frac{D\varepsilon_t\delta}{\tau} $
  • D – Diffusionskoeffizient in Gas oder Flüssigkeit (m2·s−1)
  • εt – Porosität, die für den Transport zur Verfügung steht (-)
  • δ – Konstriktivität (-)
  • τ – Tortuosität (-)

Die für den Transport zur Verfügung stehende Porosität entspricht der Gesamtporosität abzüglich Poren, die aufgrund ihrer Größe für die diffundierenden Teilchen nicht zugänglich sind, und abzüglich Sackgassen- und blinder Poren (Poren ohne Verbindung zum restlichen Porensystem). Die Konstriktivität beschreibt die Verlangsamung der Diffusion durch eine Erhöhung der Viskosität in engen Poren als Folge der größeren durchschnittlichen Nähe zur Porenwand. Sie ist eine Funktion von Porendurchmesser und Größe der diffundierenden Teilchen.

Scheinbarer Diffusionskoeffizient

Der scheinbare (apparente) Diffusionskoeffizient[6] erweitert den effektiven Diffusionskoeffizienten um den Einfluss der Sorption. Bei nichtlinearer Sorptionsisotherme ist der scheinbare Diffusionskoeffizient stets eine Funktion der Konzentration, was die Berechnung der Diffusion erheblich erschwert. Für lineare Sorption berechnet er sich zu

$ D_a = \frac{D_e}{1+\frac{K_d\rho}{\epsilon}} $
  • De – effektiver Diffusionskoeffizient (m2·s−1)
  • ε – Porosität (-)
  • Kd – linearer Sorptionskoeffizient (m3·kg−1)
  • ρRohdichte (kg·m−3)

Literatur

  1. 1,0 1,1 1,2 1,3 E. L. Cussler: Diffusion - Mass Transfer in Fluid Systems. Cambridge University Press, Cambridge/New York, 1997, ISBN 0-521-56477-8
  2. 2,0 2,1 J. Hirschfelder, C. F. Curtiss, R. B. Bird: Molecular Theory of Gases and Liquids. Wiley, New York, 1954, ISBN 0471400653
  3. Franz Durst: Grundlagen der Strömungsmechanik: Eine Einführung in die Theorie der Strömung von Fluiden. Springer, Berlin, 2006, ISBN 3540313230
  4. A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik. 17, 1905, S. 549ff.
  5. W. Jost: Diffusion in solids, liquids and gases. Academic Press Inc., New York, 1960
  6. 6,0 6,1 P. Grathwohl: Diffusion in natural porous media: Contaminant transport, sorption/desorption and dissolution kinetics. Kluwer Academic Publishers, 1998, ISBN 0-7923-8102-5

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.