Teilchen

Erweiterte Suche

Dieser Artikel befasst sich mit Teilchen in der Physik. Für weitere Bedeutungen siehe Teil (Begriffsklärung).

In der Physik bezeichnet man als Teilchen einen Körper, der klein gegenüber dem Maßstab des betrachteten Systems ist. Die innere Struktur eines einzelnen Teilchens spielt dabei keine Rolle, sondern lediglich sein Verhalten als Ganzes gegenüber anderen Teilchen oder äußeren Einflüssen. Insofern sind Teilchen ideale Objekte. Oft beschränkt man sich nur auf bestimmte Eigenschaften des realen physikalischen Objekts, wie die Masse oder die elektrische Ladung, um die Wechselwirkung zu studieren, die mit dieser Eigenschaft zusammenhängt. Je nach Betrachtungsweise kann also ein und dasselbe physikalische Objekt als Teilchen oder als System von Teilchen angesehen werden. Das gilt insbesondere für Atome, genauso aber auch für Atomkerne und auch für die Protonen und Neutronen (siehe Chemie bis Kernphysik). Die nach derzeitigem Verständnis nicht mehr aus kleineren Bestandteilen zusammengesetzten Teilchen werden als Elementarteilchen bezeichnet und im Standardmodell der Elementarteilchenphysik beschrieben (siehe Standardmodell).

Teilchen wird auch als Kurzwort für Elementarteilchen benutzt. Diese umfassen auf der einen Seite die kleinsten Bausteine der Materie, die nicht wiederum aus kleineren Teilchen zusammengesetzt sind, andererseits die Austauschteilchen wie das Photon, welche die elementaren Kräfte vermitteln.

Überblick

In der Quantenmechanik wird ein Teilchen durch eine Wellenfunktion dargestellt, deren Amplitude die Aufenthaltswahrscheinlichkeit des Teilchens angibt (siehe Teilchen in der Quantenmechanik).

In der Festkörperphysik redet man sowohl bei den Gitteratomen von Teilchen, als auch bei den Wellen, mit denen sich deren Anregungen über einem Grundzustand ausbreiten. Dies führt dazu, dass dabei eine Vielzahl von Erscheinungen als Teilchen idealisiert werden, deren Verhalten so anschaulicher beschrieben werden kann: So werden in der quantenphysikalischen Beschreibung die Anregungen eines Kristallgitters als Teilchen aufgefasst, beispielsweise als Polaronen, Excitonen oder Phononen. Löcher in den ansonsten voll besetzten Energiebändern der Elektronen in einem Halbleiter weisen die Charakteristika von Teilchen auf und werden wie positiv geladene Teilchen behandelt.[1]

Verwandte Begriffe

Der Begriff Partikel ist im Allgemeinen nicht für Teilchen zu verwenden. In bestimmten Bereichen werden diese beiden Begriffe andererseits vollkommen synonym gebraucht:

  • Verbunde von wenigen Tausenden Atomen oder Molekülen werden synonym als Nanoteilchen oder Nanopartikel bezeichnet.
  • In der Hydrodynamik bezeichnen Teilchen eine möglichst kleine Anzahl von Molekülen. Sie soll groß genug sein, um außer den mechanischen Eigenschaften Ort und Impuls auch Eigenschaften der Thermodynamik wie Druck, Temperatur und Entropie zu besitzen.[2]
  • Partikeltherapie und Teilchentherapie werden synonym verwendet, allerdings werden die dabei eingesetzten Protonen und anderen Ionen in der Physik immer nur als Teilchen bezeichnet. Die gelegentlich in diesem Zusammenhang verwendete Bezeichnung Partikel ist dem englischen particle entlehnt.

Die Bezeichnung ‚Korpuskel‘ für Teilchen ist veraltet. Die historische Diskussion zwischen Korpuskeltheorie und Wellentheorie bei der Beschreibung des Lichts und ihre Lösung im Welle-Teilchen-Dualismus ist ein möglicher Ansatzpunkt für die Auseinandersetzung mit der Quantenmechanik.[3]

Von Chemie bis zur Kernphysik

Im 5. Jahrhundert v. Chr. postulierte Demokrit, dass die Materie aus kleinsten, unteilbaren Einheiten zusammengesetzt ist.[4] Diesem Gedanken folgend verwendete John Dalton 1803 für die kleinsten, seiner Meinung nach untrennbaren Teilchen die Bezeichnung Atom (von altgriechisch ἄτομος átomos „nicht zerschneidbar, unteilbar“).

Atome als untrennbare Teilchen zu betrachten, ergibt in der Chemie durchaus Sinn. Sie werden als Objekte verwendet, von denen man als Eigenschaft zunächst nur die Massezahl betrachtet. Ordnet man sie nach der Massezahl (ohne dabei zu wissen, dass diese Ordnungszahl dabei gleichzeitig die Kernladungszahl ist!) und betrachtet die chemischen Eigenschaften der so sortierten Elemente, dann erhält man das Periodensystem.[5] Diese Einschränkung auf einzelne Eigenschaften ist durchaus wesentlich für alle Verwendungen des Begriffs Teilchen in der Physik.

Es dauerte von Dalton ein weiteres Jahrhundert (siehe den geschichtlichen Abriss unter Atom), bis Zweifel an dieser Unteilbarkeit der Atome aufkamen: Marie Curie erkannte, dass ein radioaktives Element in ein anderes übergehen kann; Ernest Rutherford konnte in seinem Streuexperiment zeigen, dass die mit Alphastrahlung beschossene Goldfolie weitgehend durchlässig ist. In der Betrachtung des Rutherford-Experiments werden sowohl die einfallenden Alpha-Teilchen, als auch die im Gitter festsitzenden positiv geladenen Atomkerne als Teilchen idealisiert (es könnten genauso geladene Billiardkugeln sein), von denen man nur wenige Eigenschaften betrachtet: die Masse, die Ladung, den Durchmesser und die Geschwindigkeit. Es spielt bei diesem Experiment keine Rolle, ob die Atomkerne irgendeine weitere Struktur besitzen, oder ob sie aus weiteren, kleineren Teilchen zusammengesetzt sind: diese wenigen Eigenschaften der betrachteten Teilchen reichen für die Beschreibung des Experiments und die theoretische Herleitung des Streumusters aus.[6]

Bei der Betrachtung des Bohrschen Atommodells sind die betrachteten Teilchen ein Elektron und ein Atomrumpf (bestehend aus dem Atomkern und möglicherweise Innenelektronen). Wiederum werden die Teilchen auf ihre wesentlichen Eigenschaften reduziert: Ladung und Masse. Mehr Eigenschaften werden den Teilchen nicht abverlangt.

Otto Hahn, Lise Meitner und Fritz Straßmann gelang es nachzuweisen, dass bei Beschuss von Uran-Atomen mit Neutronen nicht durch Erhöhung der Massezahl Transurane (mit höherer Kernladungszahl) entstehen, wie man bis dahin annahm (siehe Enrico Fermi, 1934[7][8]), sondern eine Kernspaltung in mittelgroße Elemente stattfindet. Hier lässt sich der Kern nicht mehr als ein einzelnes Teilchen verstehen, sondern nur als aus Protonen und Neutronen zusammengesetzt (gemeinsam Nukleonen genannt von lateinisch nucleus „Kern“). Weitere wichtige Teilchen in der Kernphysik sind Alpha-Teilchen, Elektronen und Neutrinos. Es stellt sich schnell die Frage, was denn die Protonen und Neutronen im Kern zusammenhält, da ja die Protonen alle positiv geladen sind und sich abstoßen müssten. Diese starke Wechselwirkung wird dadurch erklärt, dass man in der Quantenchromodynamik die Nukleonen jeweils als aus drei Quarks zusammengesetzt sieht, die von Gluonen (von englisch to glue „zusammenkleben“) zusammengehalten werden. Die Restwechselwirkung dieser Kraft außerhalb der Nukleonen hält diese ähnlich zusammen, wie die Van-der-Waals-Kräfte die Wassermoleküle zusammenhalten.[9][10]

Das Standardmodell der Elementarteilchenphysik

Die Teilchenphysik unterscheidet zwischen den Materieteilchen und den Wechselwirkungsteilchen (Austauschteilchen), sowie bei den Materieteilchen zwischen den Elementarteilchen und den zusammengesetzten Teilchen.

Die Elementarteilchen werden durch das Standardmodell der Elementarteilchenphysik beschrieben. Sie gliedern sich in drei Familien von Leptonen und drei Familien von Quarks. Die Leptonen (von griechisch λεπτος (leptos) „leicht, fein“) sind das Elektron und sein Neutrino, das Myon und sein Neutrino, sowie das Tau und sein Neutrino. Die Familien der Quarks werden mit up und down, charm und strange, sowie top und bottom bezeichnet.

Quarks können in der Natur nicht einzeln auftreten, was als Farb-Confinement bezeichnet wird (siehe auch). Vielmehr bilden sie immer zusammengesetzte Teilchen, die in Abgrenzung von den Leptonen als Hadronen (von griechisch ἁδρός, hadrós, „dick“) bezeichnet werden. Hadronen werden dabei in Mesonen (von griechisch μεσος mesos „Mittel-“) und in Baryonen (von griechisch βαρύς barys „schwer“) unterteilt. Mesonen bestehen aus einem Quark und einem Antiquark, wohingegen Baryonen aus drei Quarks bestehen. Die bekanntesten Vertreter von Baryonen sind dabei das Proton und das Neutron.

Bei den Austauschteilchen betrachtet das Standardmodell das Photon als das Austauschteilchen der elektromagnetischen Wechselwirkung. Es ist sehr eng mit den W-Bosonen und dem Z-Boson verwandt, die gemeinsam mit dem Photon die Austauschteilchen für die elektroschwache Wechselwirkung bilden. Das Austauschteilchen für die starke Wechselwirkung sind die Gluonen.[11][12]

Von den vier Grundkräften der Physik fehlt dabei im Standardmodell die Gravitation und ihr Austauschteilchen, das Graviton. So exakt die Ergebnisse des Standardmodells auch mit den Experimenten an den Beschleunigern übereinstimmen ist es bisher nicht gelungen, denselben mathematischen Formalismus auch auf die Gravitation auszudehnen. Dies ist eine der großen offenen Fragen der Theoretischen Physik.[13]

Im Standardmodell werden die Teilchen als masselos angenommen, sie erhalten aber dadurch eine scheinbare Masse, dass sie mit einem bisher noch nicht experimentell nachgewiesenen Teilchen, dem Higgs-Boson wechselwirken.

Quantenmechanische Sichtweise

Beim Übergang zur Quantenmechanik werden aus Teilchen Wellen, die ihre Aufenthaltswahrscheinlichkeiten beschreiben. Trifft z. B. Licht (oder ein Elektronenstrahl) auf einen Doppelspalt, so bildet diese Welle hinter dem Spalt ein Beugungsmuster. Auf einem Fotopapier (oder Schirm) wird das auftreffende Licht (der Elektronenstrahl) immer nur einzelne Punkte treffen. Erst im stochastischen Mittel vieler auftreffender Photonen (Elektronen) wird wieder das Beugungsmuster sichtbar. Diese gleichzeitige Interpretation als Welle und Teilchen wird als Welle-Teilchen-Dualismus bezeichnet.

Im Gegensatz zur Klassischen Mechanik, in der der Zustand des Teilchens durch Ort und Impuls festgelegt ist, können Ort und Impuls in der Quantenmechanik nie gleichzeitig genau gemessen werden (siehe Heisenbergsche Unschärferelation).

In Mehrteilchensystemen werden die Teilchen durch die Anwendung eines Erzeugungsoperators aus einem Vakuumzustand erzeugt. Solche Operatoren spielen insbesondere in der Quantenfeldtheorie eine Rolle. Zwischen den Anfangs- und Endzuständen physikalischer, wechselwirkender Teilchen können dabei virtuelle Teilchen entstehen und wieder verschwinden, die keiner Energie-Impuls-Beziehung genügen und deren Energie keine untere Schranke hat.

Der Teilchenbegriff in der Mathematischen Physik erstreckt sich von Zuständen in Hilbert-Räumen, auf denen man Algebren von Operatoren betrachtet, bis hin zu Wellen, bei denen beispielsweise ein bestimmtes Streuverhalten berechnet werden kann: hierzu zählen unter anderem Solitonen, bei denen es sich um nicht auseinanderlaufende Wellen handelt.[14]

Einzelnachweise

  1. Konrad Kopitzki: Einführung in die Festkörperphysik. Teubner, ISBN 3-519-13083-1.
  2. L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik. Band 6: Hydrodynamik. Pauk Ziesche (Hrsg.), ISBN 3-05-500070-6.
  3. Christian Gerthsen, Hans O. Kneser, Helmut Vogel: Physik. Springer, ISBN 3-540-16155-4, Kap. 16 Quantenmechanik.
  4. Sousanna-Maria Nikolaou: Die Atomlehre Demokrits und Platons Timaios. Eine vergleichende Untersuchung. Stuttgart 1998. ISBN 3-519-07661-6. Beiträge zur Altertumskunde, Band 112.
  5. C. Gerthsen, H. O. Kneser, H. Vogel: Physik. Springer, ISBN 3-540-16155-4, Kap. 12.6.1 Das Periodensystem der Elemente.
  6. C. Gerthsen, H. O. Kneser, H. Vogel: Physik. Springer, ISBN 3-540-16155-4, Kap. 13.1.2 Die Entdeckung des Atomkerns.
  7. Enrico Fermi: Possible production of element of atomic number higher than 92. In: Nature. Band 133, 1934, S. 898–899.
  8. C. Gerthsen, H. O. Kneser, H. Vogel: Physik. Springer, ISBN 3-540-16155-4, Kap. 13.1.6 Kernspaltung.
  9. Klaus Grotz und Hans V. Klapdor: Die schwache Wechselwirkung in Kern-, Teilchen- und Astrophysik. Teubner Studienbücher, ISBN 3-519-03035-7.
  10. Theo Mayer-Kuckuk: Kernphysik. Teubner Verlag, ISBN 3-519-13223-0.
  11. Harald Fritzsch: Elementarteilchen. Bausteine der Materie. C.H.Beck Verlag, ISBN 978-3-406-50846-2.
  12. Bogdan Povh, K. Rith, C. Scholz, F. Zetsche: Teilchen und Kerne. Springer Verlag, ISBN 978-3-540-68075-8.
  13. Lee Smolin: The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next. ISBN 0-618-91868-X.
  14. Philip. G. Drazin, Robin S. Johnson: Solitons. An Introduction. Cambridge University Press, ISBN 0-521-33389-X.

Weblinks

Newsmeldungen wie "Teilchen" auf cosmos-indirekt.de

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
19.03.2021
Quantenoptik
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
15.09.2020
Quantenoptik
Einzelphotonen vom Siliziumchip: Forschungsteam entwickelt neuartige Quelle für Quanten-Lichtteilchen
Die Quantentechnologie gilt als überaus zukunftsträchtig: Quantencomputer sollen in einigen Jahren Datenbanksuchen, KI-Systeme und Simulationsrechnungen revolutionieren.
01.07.2020
Sterne - Teilchenphysik
Doppelstern als kosmischer Teilchenbeschleuniger
M
17.06.2020
Astrophysik - Elektrodynamik
Teilchenbeschleunigung in Centaurus A lokalisiert
Der Ursprung höchstenergetischer Gammastrahlung in der 12 Millionen Lichtjahre entfernten Radiogalaxie Centaurus A konnte erstmals lokalisiert werden: Er ist bis in den sogenannten Jet – einen riesigen, gerichteten Materiestrom – ausgedehnt.
14.04.2020
Teilchenphysik
Teilchen-Billard mit drei Partnern: Frankfurter Forscher lösen Rätsel um Compton-Effekt
Mit Licht lassen sich Elektronen aus Atomen herausschlagen, dabei prallen Lichtteilchen und Elektronen wie zwei Billardkugeln voneinander ab – der Compton-Effekt.
24.03.2020
Quantenoptik
Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten
A
20.03.2020
Teilchenphysik
Doppelter Mini-Teilchenbeschleuniger mit Energie-Recycling
Ein DESY-Team hat einen zweistufigen Mini-Beschleuniger gebaut, der einen Teil der eingespeisten Laserenergie recycelt und damit die beschleunigten Teilchen ein zweites Mal anschiebt.
04.02.2020

Neues Quasiteilchen an der TU Wien entdeckt: Das Pi-ton
Eigentlich hatte man nach etwas ganz anderem gesucht, doch gefunden wurde ein bisher unbekanntes Quasiteilchen: Ein Bindungszustand aus zwei Elektronen, zwei Löchern und Licht.
20.11.2019

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern
Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist.
03.09.2019

Ein neues Alphabet zum Schreiben und Lesen von Quantennachrichten mit sehr schnellen Teilchen
Quanteninformation beruht auf der Möglichkeit, Nachrichten in ein Quantenteilchen zu schreiben und zuverlässig auszulesen.
14.06.2019

Unsterbliche Quantenteilchen: Der Zyklus von Zerfall und Wiedergeburt
In der makroskopischen Welt ist der Zerfall unerbittlich: Zerbrochene Gegenstände fügen sich nicht von selbst wieder zusammen.
09.05.2019

Schneller rechnen mit Quasi-Teilchen
Auf dem Weg zu topologischen Quantencomputern ist Physikern der Universität Würzburg ein wichtiger Fortschritt gelungen. In der renommierten Fachzeitschrift Nature stellen sie jetzt ihre Ergebnisse vor.
07.05.2019

Neuartiges Material zeigt auch neue Quasiteilchen
Forschende des PSI haben ein neuartiges kristallines Material untersucht, das bislang nie gesehene elektronische Eigenschaften zeigt.
03.05.2019

Quantensensor für Lichtteilchen
Ein Photodetektor wandelt Licht in ein elektrisches Signal um, das Licht geht dabei verloren.
28.02.2019

Interview mit Dr. E. Stenson über die sensiblen Antiteilchen der Elektronen: Positronen in der Falle
Erstmals ist es Wissenschaftlern der Technischen Universität München (TUM) und des Max-Planck-Instituts für Plasmaphysik (IPP) gelungen, verlustfrei Positronen in einen Magnetfeldkäfig zu bringen.
24.01.2019
Quantenoptik - Teilchenphysik
Wie der Teilchenstrahl seine Struktur bekommt
Die Behandlung von Tumoren mit Protonen gilt als sehr vielversprechend.
13.11.2018
Festkörperphysik
Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt
Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.
02.10.2018
Quantenphysik - Teilchenphysik
Durchbruch in der Quantenphysik: Reaktion von Quantenfluid auf Fotoanregung gelöster Teilchen
F
30.08.2018
Teilchenphysik
Higgs-Teilchen reagiert auch mit „unserer“ Materie
Der ATLAS-Kollaboration ist es nun am Forschungszentrum CERN in der Schweiz gelungen, den Zerfall des Higgs-Teilchens in bottom-Quarks zweifelsfrei nachzuweisen.
29.08.2018
Plasmaphysik - Teilchenphysik
Erfolg für Teilchenbeschleuniger der Zukunft: Elektronen reiten Plasmawelle
Physikern könnte sich bald eine neue Tür zu den Geheimnissen des Universums öffnen.
15.08.2018
Teilchenphysik
Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie
Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen
31.07.2018
Quantenphysik - Teilchenphysik
Licht ins Dunkel der Vielteilchenverschränkung
Die Quantenverschränkung von zwei Teilchen ist heute gut verstanden.
12.07.2018
Astrophysik - Teilchenphysik
Erste Beweise für Quelle extragalaktischer Teilchen
Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen.
12.07.2018
Astrophysik - Teilchenphysik
Durchbruch bei der Fahndung nach Teilchenbeschleunigern im Weltall
Mit einer international angelegten astronomischen Ringfahndung haben Forscher erstmals eine Quelle hochenergetischer kosmischer Neutrinos geortet, geisterhafter Elementarteilchen, die Milliarden Lichtjahre durch das Weltall reisen und dabei mühelos Sterne, Planeten und ganze Galaxien durchqueren.
06.07.2018
Teilchenphysik
Teilchenphysiker der TU Dresden an Entdeckung neuer Quarks-Wechselwirkungen beteiligt
Teilchenphysiker der TU Dresden und internationale Forschungskollegen haben eine äußerst seltene Wechselwirkung zwischen Quarks entdeckt, die man mit winzigen Lichtschwertern vergleichen kann.
27.06.2018
Teilchenphysik - Thermodynamik
Studie erlaubt Einblick in Physik des Higgs-Teilchens
Physikern der Universität Bonn ist es gelungen, ein supraleitendes Gas in einen exotischen Zustand zu versetzen.
14.06.2018
Quantenphysik
Dem Mysterium der verschränkten Lichtteilchen auf der Spur
Berner Forschenden ist ein wichtiger Schritt auf dem Weg zu neuen Messmethoden wie der Quanten-Spektroskopie gelungen.
21.06.2018
Elektrodynamik - Teilchenphysik
Wärmestrahlung bei kleinsten Teilchen
Wissenschaftlern aus Greifswald und Heidelberg ist es gelungen, zeitaufgelöste Messungen der inneren Energieverteilung gespeicherter Clusteranionen durchzuführen.
26.04.2018
Quantenphysik - Statistische Physik - Teilchenphysik
Einstein-Podolsky-Rosen-Paradoxon erstmals in Vielteilchensystem beobachtet
Physiker der Universität Basel haben das quantenmechanische Einstein-Podolsky-Rosen Paradoxon erstmals in einem System aus mehreren hundert miteinander wechselwirkenden Atomen beobachtet.
23.03.2018
Teilchenphysik
Japanischer Teilchenbeschleuniger SuperKEKB startet durch
Warum gibt es im Universum so viel mehr Matrie als Antimaterie? Um diese fundamentale Frage zu klären, bereiten Forscher des Exzellenzclusters Universe im Rahmen einer internationalen Forschungskollaboration im japanischen Tsukuba ein wichtiges Experiment vor.
02.11.2017
Teilchenphysik
Teilchendiffusion funktioniert anders als bisher angenommen
Der Physiker Peter Hänggi und seine Gruppe am Augsburger Lehrstuhl für Theoretische Physik I berichten in PNAS über die erstmals gelungene Quantifizierung hydrodynamischer Effekte beim Partikeltransport

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

18.06.2021
Quantenphysik
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.