Kondensierte Materie

Erweiterte Suche

(Weitergeleitet von Festkörperphysik)

Kondensierte Materie bezeichnet in den Naturwissenschaften Materie in gebundenem Zustand, im Gegensatz zum gasförmigen Zustand.

Erste Brillouin-Zone eines FCC-Gitters

Die Physik der kondensierten Materie unterscheidet sich aufgrund der gegenseitigen Wechselwirkung der Bausteine der Materie erheblich von der freier Teilchen (Elementarteilchenphysik, Atomphysik). Die theoretische Beschreibung basiert auf der Vielteilchentheorie. Viele Phänomene wie Deformierbarkeit, magnetische Ordnung, oder elektrische Leitfähigkeit gehen auf eine bestimmte Ordnung der Wechselwirkung zwischen den Bausteinen der kondensierten Materie zurück. Sie sind daher in kondensierter Materie ganz anders zu behandeln als bei freien Teilchen oder treten bei kondensierter Materie überhaupt erst auf.

Die Behandlung der Physik kondensierter Materie ist dadurch gekennzeichnet, dass die große Anzahl der Teilchen, die das zu beschreibende System (Festkörper oder Flüssigkeit) bilden, eine elementare Lösung der einzelnen Bewegungsgleichungen ausschließt. An die Stelle einer Beschreibung der Zustände der einzelnen Teilchen des Systems treten stattdessen Aussagen über Häufigkeiten (beziehungsweise normiert auf die Anzahl der möglichen Zustände: Wahrscheinlichkeiten), mit denen bestimmte Zustände beliebiger Teilchen im System auftreten.

In Festkörpern sind besonders Korrelationen unterschiedlichster Art von Interesse (zum Beispiel langreichweitige Korrelation der Atompositionen selbst $ \Rightarrow $ Kristallgitter, oder Korrelation der Elektronenspins → magnetische Ordnung wie Ferromagnetismus und Antiferromagnetismus).

Ein wichtiges Hilfsmittel bei der Behandlung von Verformungen in kondensierter Materie stellt die Kontinuumsmechanik dar.

Die Konzepte der Physik kondensierter Materie werden weit über den Bereich fester und flüssiger Materie hinaus angewandt (Beispiele: Risikomanagement, Versicherungsstatistik, Neuronale Netze).

Sachgebiete

Festkörperphysik

Kristallines Siliciumcarbid

Die Festkörperphysik befasst sich mit der Physik von Materie im festen Aggregatzustand. Von besonderer Bedeutung sind dabei kristalline Festkörper, das sind solche, die einen translationssymmetrischen (periodischen) Aufbau aufweisen, da diese Translationssymmetrie die Behandlung vieler physikalischer Phänomene drastisch vereinfacht oder sogar überhaupt erst ermöglicht. Daher erfolgt die Anwendung des Modells des idealen Kristallgitters häufig auch dann, wenn die Bedingung der Periodizität nur sehr eingeschränkt, zum Beispiel nur sehr lokal erfüllt ist. Die Abweichung von der strengen Periodizität wird dann durch Korrekturen berücksichtigt.

Atomare Struktur von Glas (2D-Modell)

Physik der Flüssigkeiten

Die Physik der Flüssigkeiten befasst sich mit Materie im flüssigen Aggregatzustand. Die Bausteine der Flüssigkeit weisen eine hohe gegenseitige Beweglichkeit auf (Translation und Rotation).

Weiche kondensierte Materie

Polarisationsmikroskopische Aufnahme eines Flüssigkristalls

Unter dem Begriff der weichen kondensierten Materie fasst man Stoffe zusammen, die sich durch zwei wesentliche Merkmale von der „harten Materie“ kristalliner Festkörper unterscheiden:

  • Einerseits befindet sich die charakteristische Längenskala in der Größenordnung von Molekülen, also in einem Bereich zwischen 1 nm und 1 µm. Die grundlegenden Bausteine der weichen Materie besitzen also eine komplexe Substruktur.
  • Andererseits unterliegen diese Bausteine starken thermischen Fluktuationen, so dass die relevante Energieskala durch die thermische Anregungsenergie $ k_{\mathrm {B} }T $ gesetzt wird. Die hier auftretenden Energien sind also erheblich kleiner (typischerweise einige meV) als bei der harten Materie, wo sie im Bereich von einigen Elektronenvolt (eV) liegen.

Zur weichen Materie zählen vor allem amorphe Substanzen, die keine langreichweitige kristalline Ordnung besitzen, wie: Polymere, Flüssigkristalle, Kolloide und Membranen.

Systeme (exemplarisch)

Wafer aus Silicium – heute bedeutendster Halbleiter

Phänomene (exemplarisch)

Ein Magnet schwebt über einem mit flüssigem Stickstoff gekühlten Hochtemperatursupraleiter (ca. −197 °C).

Literatur

  • Ch. Kittel: Einführung in die Festkörperphysik. 14. Auflage. R. Oldenbourg Verlag, München 2005, ISBN 3-486-57723-9
  • N. W. Ashcroft, N. D. Mermin: Festkörperphysik. 3. Auflage. R. Oldenbourg Wissenschaftsverlag, München 2007, ISBN 978-3-486-58273-4
  • H. Ibach, H. Lüth: Festkörperphysik. 6. Auflage. Springer Verlag, Berlin 2002, ISBN 3-540-42738-4
  • K. Kopitzki, P. Herzog: Einführung in die Festkörperphysik. Teubner Verlag, ISBN 978-3-8351-0144-9
  • G. Czycholl: Theoretische Festkörperphysik. Springer Verlag, ISBN 978-3-540-74789-5
  • Siegfried Hunklinger: Festkörperphysik. 3., verbesserte und aktualisierte Auflage. München: Oldenbourg Wissenschaftsverlag 2011, ISBN 978-3-486-70547-8
  • Rudolf Gross, Achim Marx: 'Festkörperphysik'. 2012. München. Oldenbourg Wissenschaftsverlag. ISBN 978-3-486-71294-0

Weblinks

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.