Synchrotron

Erweiterte Suche

Das Synchrotron ist ein Typ des Teilchenbeschleunigers und gehört zu den Ringbeschleunigern. Geladene Elementarteilchen oder Ionen können darin auf sehr hohe (relativistische) Geschwindigkeiten beschleunigt werden, wodurch sie sehr hohe kinetische Energien erhalten.

Die grundlegenden Konzepte für das Synchrotron wurden unabhängig in Russland von Wladimir Iossifowitsch Weksler (1944 am Lebedew-Institut) und von Edwin McMillan (während des Zweiten Weltkriegs in Los Alamos) entwickelt.

Anlage eines Synchrotrons im australischen Clayton.

Eine Sonderform des Synchrotrons ist der Speicherring. Auch eine Gesamtanlage aus Speicherring und Synchrotron zu dessen Füllung wird manchmal einfach als Synchrotron bezeichnet.

Aufbau

Schema des Elektronen-Synchrotrons SOLEIL in Frankreich

Zur Beschleunigung wird ein passend synchronisiertes hochfrequentes elektrisches Wechselfeld (Mikrowellen) verwendet. Die Teilchen werden durch – abhängig von der erreichten Energie – nachgeregelte Magnetfelder auf eine in sich geschlossene Bahn geleitet und erreichen dabei Geschwindigkeiten nahe der Lichtgeschwindigkeit. Damit die Teilchen nicht durch Stöße mit Gasteilchen verlorengehen, liegt die komplette Bahn in einem Röhrensystem, in dem ein Vakuum, genauer Ultrahochvakuum (UHV), herrscht.

Elektronensynchrotron

Beim Elektronensynchrotron erzeugt eine Glühkathoden-Elektronenquelle freie Elektronen, die dann über eine Gleichspannungs-Beschleunigungsstrecke in einen Linearbeschleuniger, ein Mikrotron oder sogar schon in einen ersten Synchrotron-Beschleunigungsring geleitet werden (siehe Bild). In diesem werden die Elektronen bis zu einer Endenergie elektrodynamisch beschleunigt und dann – im Fall einer Speicherringanlage – in einem Elektronenspeicherring gespeichert, der bis zu einigen hundert Metern Umfang haben kann. Die Elektronen werden dort so lange gehalten, bis sie durch Kollisionen mit Restgasmolekülen unter die verwertbare Dichte verringert sind. Bei modernen Synchrotronen wie BESSY oder der ESRF beträgt die Lebensdauer des Elektronenstroms im Speicherring einige Tage; allerdings werden in regelmäßigen Abständen Elektronen zugeführt, um einen ausreichenden Ringstrom für die Experimente und Anwendungen bereitzustellen.

Synchrotronstrahlung

An Elektronensynchrotrons wurde erstmals die intensive und breitbandige elektromagnetische Strahlung (Synchrotronstrahlung) nachgewiesen, die aufgrund der Ablenkung sehr schneller geladener Teilchen entsteht. Sie war 1949 von Julian Schwinger theoretisch beschrieben worden. Sie trat anfangs an Beschleunigern für die teilchenphysikalische Forschung störend in Erscheinung, da ihre Abstrahlung den Teilchen Energie entzieht. Aufgrund ihrer Beschaffenheit eignet sie sich andererseits für Untersuchungen in anderen Bereichen der Physik sowie weiterer Naturwissenschaften, aber auch für industrielle und medizinische Anwendungen. Die Synchrotronstrahlung wird daher inzwischen gezielt produziert, wozu nicht mehr die zur Führung des Teilchenstrahls benötigten Dipolmagneten eingesetzt werden, sondern sogenannte Undulatoren. Ein Undulator hat den Vorteil, dass sein Emissionswinkel schmaler als beim Wiggler ist, es treten allerdings Harmonische der emittierten Photonenenergie auf. Wiggler haben ein breiteres Strahlungsspektrum als Undulatoren und ihre Magnete werden typischerweise in der Anordnung eines Halbach-Arrays gebaut.

Polarisation der Synchrotronstrahlung

Die Synchrotronstrahlung ist in Richtung der Ringebene polarisiert. Sie eignet sich dadurch gut, um magnetische Materialien mittels mikromagnetischer Untersuchung zu charakterisieren. Die lineare Polarisation kann mittels mechanischer Phasenverschiebung der Magnetisierungsregionen in einem Undulator in zirkulare Polarisation umgewandelt werden; dies ermöglicht höhere Kontraste bei der Untersuchung der Magnetisierungsregionen magnetischer Materialien. Die Bestrahlung racemischer organischer Verbindungen mit zirkular polarisierter Synchrotronstrahlung erlaubt es etwa, in chiralen Aminosäuren einen Enantiomerenüberschuss zu erzielen.

Energie

Die etwa 1 m lange Kette von supraleitenden Hohlraumresonatoren im Teilchenbeschleuniger DESY erzeugt ein periodisches Wechselfeld mit 1,3 GHz, das die Elektronen beschleunigt.

Die maximale Teilchenenergie, die in einem bestimmten Synchrotron erreicht werden kann, ist abhängig von der maximalen magnetischen Flussdichte B, vom Radius r des Rings und von den Teilcheneigenschaften. Es gilt für hohe Energien näherungsweise:

$ E_{\mathrm {max} }\approx r\cdot q\cdot B\cdot c $

Dabei ist r der Radius des Synchrotronbeschleunigers, q die Ladung des beschleunigten Teilchens, B die magnetische Flussdichte der Ablenkmagneten und c die Lichtgeschwindigkeit. In der Formel ist keine Abhängigkeit von der Masse des Teilchens ersichtlich, allerdings wurde die Abgabe von Synchrotronstrahlung nicht beachtet. Leichtere Teilchen sind bei gleicher Energie schneller (genauer: haben höhere relativistische γ-Faktoren; da die Geschwindigkeiten nahe der Lichtgeschwindigkeit sind, ist der Geschwindigkeitsunterschied sehr klein) als schwerere Teilchen und strahlen daher stärker. Der Energieverlust durch diese Synchrotronstrahlung muss durch die elektrische Beschleunigung ausgeglichen werden. Deshalb erreicht man mit Elektronen in Synchrotronen meist nur ca. 10 GeV, höherenergetische Elektronen kann man leichter mit Linearbeschleunigern erzeugen. Protonenenergien hingegen sind in modernen Synchrotronen hauptsächlich nach obiger Formel durch Radius und Magnetfeldstärke beschränkt.

Verwendung

Die in Synchrotronen beschleunigten Teilchen werden in der Regel dazu verwendet, um Kollisions- oder Targetexperimente durchzuführen (Teilchenphysik). Zur Erzeugung von Synchrotronstrahlung verwendet man in der Regel Elektronen-Speicherringe.

Übersicht über einzelne Synchrotrone

  • ALS (Advanced Light Source), Lawrence Berkeley National Laboratory, Berkeley, USA
  • Advanced Photon Source in den USA
  • ALBA an der Autonomen Universität Barcelona, Cerdanyola del Vallès, Spanien
  • ANKA (Angströmquelle Karlsruhe)
  • BESSY (Berliner ElektronenSpeicherring-Gesellschaft für SYnchrotronstrahlung) in Berlin (am WISTA in Adlershof)
  • CERN (frz. Conseil Européen pour la Recherche Nucléaire, das Europäische Kernforschungslabor) bei Meyrin im Kanton Genf, Schweiz
  • CLS (Canadian Light Source)
  • COSY (Cooler Synchrotron im Forschungszentrum Jülich)
  • DELTA (Dortmunder Elektronen Speicherring Anlage)
  • DESY (Forschungszentrum Deutsches Elektronen-Synchrotron)
  • Diamond (Diamond Light Source) South Oxfordshire, UK
  • ELETTRA (ELETTRA Synchrotron Light Laboratory) in Triest, Italien
  • Elektronen-Stretcher-Anlage (ELSA) Universität Bonn
  • ESRF (European Synchrotron Radiation Facility) in Grenoble
  • SIS18 und ESR am GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt
  • HIT (Heidelberger Ionenstrahl-Therapie, Universitätsklinikum Heidelberg und DKFZ)
  • LNLS (Laboratório Nacional de Luz Síncrotron) in Campinas, Bundesstaat São Paulo, Brasilien
  • MAMI (Mainzer Microtron) Johannes Gutenberg-Universität Mainz
  • MAX-LAB (MAX-LAB Synchrotron Radiation Facility) in Lund, Schweden
  • MLS (Metrology Light Source) in Berlin, Deutschland
  • NSLS (National Synchrotron Light Source) am Brookhaven National Laboratory, Long Island, USA
  • OPTIVUS (Loma Linda University Medical Center in Californien) USA
  • SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) in Allaan, Jordanien
  • SOLEIL (Synchrotron SOLEIL) in GIF-sur-YVETTE, bei Paris, Frankreich
  • SPring-8 (Super Photon ring-8 GeV) in Japan
  • SSRF in Shanghai
  • SLS (Swiss Light Source) am Paul Scherrer Institut in der Schweiz
  • SSLS (Singapore Synchrotron Light Source an der National University of Singapore)
  • UVSOR II (Ultraviolet Synchrotron Orbital Radiation Facility) in Okazaki, Japan

Weblinks

News mit dem Thema Synchrotron

27.03.2023
Atomphysik
So entstehen Fussballmoleküle im Weltall
Seit Langem wird vermutet, dass im All sogenannte Fullerene und deren Abkömmlinge entstehen können – grosse Kohlenstoffmoleküle in Fussball-, Schüssel- oder Röhrchenform.
17.02.2021
Quantenoptik | Teilchenphysik
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
24.02.2020
Elektrodynamik | Festkörperphysik
Kurzfilm eines magnetischen Nanowirbels
Erstmals haben Forschende am Paul Scherrer Institut PSI einen «3-D-Film» von magnetischen Vorgängen im Nanometerbereich aufgenommen.
15.07.2019
Teilchenphysik | Festkörperphysik
Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet
Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten.
08.08.2018
Teilchenphysik
Festes Kohlendioxid im tiefen Erdinneren - Neue Modelle der Entstehung von Diamanten nötig
Ein internationales Forschungsteam aus Wien und Florenz hat durch Messungen an der Europäischen Synchrotronstrahlquelle ESRF in Grenoble herausgefunden, dass freies CO2 2.
16.04.2018
Elektrodynamik | Biophysik
Experiment an BESSY II zeigt, wie der Kompass in magnetisch empfindlichen Bakterien funktioniert
Bakterien sind ungeheuer vielfältig, nicht nur von Gestalt, sondern auch in ihren Eigenschaften.
03.04.2018
Festkörperphysik
Deutsch-französisches Forscherteam entdeckt „Anti-aging“ in metallischen Gläsern
Metallische Gläser unterliegen derselben natürlichen Entwicklung wie wir Menschen: sie altern.
30.06.2017
Monde | Kometen_und_Asteroiden | Planeten
Bayreuther Hochdruckforscher lösen Meteoriten-Rätsel
Eine Forschergruppe der Universität Bayreuth hat die langgesuchte Erklärung für den scheinbar widersprüchlichen Aufbau von Mond- und Mars-Meteoriten gefunden.

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.