Earlandit

Erweiterte Suche

Earlandit
Chemische Formel
  • Ca3(C6H5O7)2 · 4H2O[1] (Summenformel)
  • Ca3[CH2(COO)-CHOH(COO)-CH2(COO)]2 · 4H2O[2] (Strukturformel)
Mineralklasse Organische Verbindungen
10.AC.10 (8. Auflage: IX/A.02) nach Strunz
50.02.02.01 nach Dana
Kristallsystem monoklin
Kristallklasse; Symbol nach Hermann-Mauguin
Farbe Weiß, Blassgelb
Strichfarbe Weiß
Mohshärte
Dichte (g/cm3) gemessen: 1,80 bis 1,95 ; berechnet: 1,96[3]
Glanz
Transparenz durchscheinend
Bruch
Spaltbarkeit
Habitus knollig, nierig, körnig
Kristalloptik
Brechungsindex nα = 1,515 nβ = 1,530 nγ = 1,580[2]
Doppelbrechung
(optischer Charakter)
δ = 0,065[2] ; zweiachsig positiv
Optischer Achsenwinkel 2V = 60° (gemessen); 50° (berechnet)[2]

Earlandit ist ein extrem seltenes Mineral aus der Mineralklasse der organischen Verbindungen. Es kristallisiert im monoklinen Kristallsystem mit der Zusammensetzung Ca3(C6H5O7)2 · 4H2O[1], ist also chemisch gesehen ein Calciumcitrat, d.h. das Calciumsalz der Citronensäure.

Von Earlandit sind bisher nur knollige bzw. nierenförmige, polykristalline Mineral-Aggregate bekannt geworden, wobei sie eine charakteristische, raue Oberfläche aufweisen. Die Größe der bisher gefundenen Aggregate lag bei etwa 1,5 mm. Größere Kristallgruppen oder Einzellkristalle sind bisher nicht bekannt geworden. Aufgrund der Seltenheit diese Minerals sind viele Kenngrößen, wie die Härte oder das Bruchverhalten, noch nicht bestimmt worden.

Etymologie und Geschichte

Earlandit wurde erstmals im Verlauf der Scottish National Antarctic Expedition (1902-1904) gefunden und von Arthur Earland einem britischen Ozeanographen beschrieben. Die genaue Analyse des Minerals und seine Klassifizierung wurden erst 1936 durch F. A. Bannister und M. H. Hey durchgeführt[4]. Diese benannten das Mineral dann nach dem Erstentdecker.[5]

Klassifikation

In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Earlandit zur Mineralklasse der „Organischen Verbindungen“ und dort zur Abteilung der „Salze organischer Säuren“, wo er zusammen mit Abelsonit, Calclacit, Dashkovait, Formicait, Hoganit, Julienit, Kafehydrocyanit, Mellit und Paceit die „Mellit-Julienit-Gruppe“ mit der System-Nr. IX/A.02 bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz'schen Mineralsystematik ordnet Earlandit ebenfalls in die Klasse der „Organischen Verbindungen“ und dort in die Abteilung der „Salze von organischen Säuren“ ein. Diese Abteilung ist allerdings weiter unterteilt nach der salzbildenden Säure, so dass das Mineral entsprechend seiner Zusammensetzung in der Unterabteilung der „Benzol-Salze“ zu finden ist, wo es als einziges Mitglied die unbenannte Gruppe 10.AC.10. Es ist allerdings zu beachten, das Earlandit weder ein Derivat des Benzols, noch eine aromatische Verbindung ist.

Auch die vorwiegend im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Earlandit in die Klasse der „Organischen Minerale“ und der gleichnamigen Abteilung ein. Hier ist er als einziges Mitglied in der unbenannten Gruppe 50.02.02 innerhalb der Unterabteilung der „Salze organischer Säuren (Mellitate, Citrate, Cyanate und Acetate)“ zu finden.

Bildung und Fundorte

Bis heute ist die genaue Bildung von Earlandit noch nicht geklärt. Fest steht allerdings, dass es durch Biomineralisation entsteht[6], da die Bildung von Citronensäure bzw. ihrer Salze ist an biologische Vorgänge gebunden ist (vgl. → Citratzyklus). Auch wenn die Löslichkeit von Calciumcitrat in kaltem Wasser nur schlecht ist, so ist die Bildung von Earlandit in den Tiefseesedimenten doch bemerkenswert.

Gefunden wurden Earlanditstufen, die auf Gehäusen von Foraminiferen aufgewachsen waren oder die sich in Bohrgängen von Tiefseewürmern gebildet hatten. Letzteres wird als Beleg dafür herangezogen, dass sich Earlandit im Sediment bildet und nicht durch äußere Einflüsse in das Sediment eingebracht wird. Mit Earlandit typischerweise vergesellschaftete Mineralien sind Gips und Weddellit.

Einzig bekannter Fundort für Earlandit ist die Weddellsee in der westlichen Antarktis. Hier wurde es bei den Koordinaten 71°22' S, 16°34' W in 2580 m Tiefe in den entsprechenden Tiefseesedimenten gefunden.

Kristallstruktur

Earlandit kristallisiert monoklin mit den Gitterparametern a = 30,94 Å; b = 5,93 Å; c = 10,56 Å und β = 93,7° sowie 4 Formeleinheiten pro Elementarzelle.[1] Aufgrund der Seltenheit und weil von Earlandit nur polykristalline Aggregate vorliegen, sind keine weiteren Daten zur Kristallstruktur verfügbar.

Die chemische Formel von Earlandit kann am besten als Ca3[CH2(COO)-CHOH(COO)-CH2(COO)]2· 4H2O wiedergegeben werden (vgl. die Strukturformel von Calciumcitrat)[2], da die häufig in der Literatur verwendete, idealisierte Summenformel Ca3(C6H5O7)2 · 4H2O keine Aussage zur Struktur des Citratanions macht.

Verwendung

Auch wenn es viele Verwendungen für Calciumcitrat gibt, so sind diese, aufgrund der extremen Seltenheit von Earlandit für das Mineral nur hypothetisch.

Siehe auch

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2  Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 721.
  2. 2,0 2,1 2,2 2,3 2,4 Mindat - Earlandite
  3. John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols: Earlandite, in: Handbook of Mineralogy, Mineralogical Society of America, 2001 (PDF 64,6 kB)
  4. Arthur Earland, F. A. Bannister, M. H. Hey: Foraminifera, Part IV. Additional Records from the Weddell Sea sector from material obtained by the S. Y. "Scotia", in: Discovery Reports, Band XIII, S. 1-76 (PDF 742 kB)
  5. New Mineral Names, in: American Mineralogist, Academy of Natural Sciences of Philadelphia 1. Oktober 1936 (PDF 400,7 kB)
  6. Steve Weiner, Patricia M. Dove: An Overview of Biomineralization Processes and the Problem of the Vital Effect (PDF 1,54 MB)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
08.07.2021
Festkörperphysik - Quantenphysik
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
01.07.2021
Festkörperphysik - Teilchenphysik
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht.
29.06.2021
Planeten
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
29.06.2021
Festkörperphysik - Quantenoptik
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt.