Arsen(III)-sulfid

Erweiterte Suche

Kristallstruktur
As2S3 im Feststoff
__ As3+     __ S2−
Allgemeines
Name Arsen(III)-sulfid
Andere Namen
  • Arsentrisulfid
  • Diarsentrisulfid
  • Gelber Arsenik
  • Gelbes Schwefelarsen
  • Königsgelb
Verhältnisformel As2S3
CAS-Nummer 1303-33-9
Kurzbeschreibung

gelber Feststoff[1]

Eigenschaften
Molare Masse 246,04 g·mol−1
Aggregatzustand

fest

Dichte

3,43 g·cm−3[1]

Schmelzpunkt

300 °C[1]

Siedepunkt

707 °C[1]

Löslichkeit

unlöslich in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
06 – Giftig oder sehr giftig 09 – Umweltgefährlich

Gefahr

H- und P-Sätze H: 301-331-410
P: 261-​264-​270-​271-​273-​301+310-​304+340-​311-​321-​330-​403+233-​405-​501Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [3]
EU-Gefahrstoffkennzeichnung [4] aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
Giftig Umweltgefährlich
Giftig Umwelt-
gefährlich
(T) (N)
R- und S-Sätze R: 23/25-50/53
S: (1/2)-20/21-28-45-60-61
MAK

nicht festgelegt, da cancerogen[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche nicht möglich

Arsen(III)-sulfid (auch Diarsentrisulfid oder Arsentrisulfid), gelbes Schwefelarsen As2S3 (Molare Masse: 246,02 g/mol), ist eine chemische Verbindung bestehend aus den Elementen Arsen und Schwefel.

Vorkommen

Auripigment

Als Mineral liegt es in der Form $ As_4S_6 $ vor und wird Auripigment genannt.


Darstellung

Arsen(III)-sulfid entsteht bei der Sublimation von Arseniger Säure mit Schwefel und wird aus der Lösung der Arsenigen Säure durch Schwefelwasserstoff gefällt.

Eigenschaften

Es ist zitronengelb, undurchsichtig, glänzend und unlöslich in Wasser. Es schmilzt zu einer gelbroten Flüssigkeit, verdampft bei 700 °C ohne Zersetzung und verbrennt an der Luft zu den Anhydriden der Arsenigen Säure und der Schwefligen Säure.

Struktur

Im Feststoff liegt Arsen(III)-sulfid als As2S3 in einer polymeren Struktur vor. Arsen ist dabei dreibindung, Schwefel zweibindung. In der Gasphase bildet sich As4S6, das in der Adamantan-Struktur vorliegt.

Verwendung

Das Hüttenprodukt, aus Arseniger Säure und Schwefel zusammengeschmolzen, besteht oft wesentlich nur aus Arseniger Säure mit wenig mehr als 1 % Schwefel und kommt als Gelbglas, gelber Arsenik, gelbes Arsenglas, Königsgelb oder gelbes Schwefelarsen in den Handel. Bei der Reinigung der Schwefelsäure mit Schwefelwasserstoff wird es als Nebenprodukt erhalten.

Als Farbpigment wurde es für gelbe Malerfarbe und zum Aufhellen von Schellack verwendet.

In der Medizin wurde es als Enthaarungsmittel (Rhusma) eingesetzt.

Toxizität

Reines Arsen(III)-sulfid, ist wasser- und säureunlöslich und ungiftig, da es vom Organismus nur in sehr geringen Mengen aufgenommen wird. Da es aber in der Praxis mehr oder weniger mit anderen Arsenverbindungen verunreinigt ist, wird es für den technischen Umgang als giftig eingestuft.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Datenblatt Arsen(III)-sulfid bei AlfaAesar, abgerufen am 15. Dezember 2010 (JavaScript erforderlich)..
  2. 2,0 2,1 Nicht explizit in EU-Verordnung (EG) 1272/2008 (CLP) gelistet, fällt aber dort mit der angegebenen Kennzeichnung unter den Sammelbegriff „Arsenverbindungen“; Eintrag aus der CLP-Verordnung zu Arsenverbindungen in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. April 2012 (JavaScript erforderlich) Referenzfehler: Ungültiges <ref>-Tag. Der Name „CLP_520009“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
  3. Eintrag zu CAS-Nr. 1303-33-9 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 8. März 2011 (JavaScript erforderlich).
  4. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.

Literatur

  • Holleman, Wiberg: Lehrbuch der anorg. Chemie, 91.–100. Auflage, deGruyter 1985, S. 1046, ISBN 3-11-007511-3
  • Altmann: Chemisch-technische Stoffwerte, 2. Auflage, S. 28, Harri Deutsch Frankfurt 1987, ISBN 3-8171-1014-6

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?