Antimon(III)-sulfid

Erweiterte Suche
Kristallstruktur
Keine Kristallstruktur vorhanden
Allgemeines
Name Antimon(III)-sulfid
Andere Namen
  • Antimontrisulfid
  • Antimonglanz
  • Antimonorange
  • Stibnit
  • Diantimontrisulfid
  • Grauspiessglanz
  • Schwefelantimon
  • Antimonschwarz
Verhältnisformel Sb2S3
CAS-Nummer 1345-04-6
PubChem 16689752
Kurzbeschreibung

dunkelgrau bis schwarz (kristalline form) orangerot (amorph)er geruchloser Feststoff[1]

Eigenschaften
Molare Masse 339,68 g·mol−1
Aggregatzustand

fest

Dichte

4,12–4,64 g·cm−3[1]

Schmelzpunkt

550 °C[1]

Siedepunkt

1150 °C[1]

Löslichkeit

praktisch unlöslich in Wasser[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
07 – Achtung 09 – Umweltgefährlich

Achtung

H- und P-Sätze H: 302-332-411
P: 273 [2]
EU-Gefahrstoffkennzeichnung [3][2]
Gesundheitsschädlich Umweltgefährlich
Gesundheits-
schädlich
Umwelt-
gefährlich
(Xn) (N)
R- und S-Sätze R: 20/22-51/53
S: 61
LD50

> 2000 mg·kg−1 (Ratte, oral)[2]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Antimon(III)-sulfid ist eine chemische Verbindung der Elemente Antimon und Schwefel. Es gehört zu der Gruppe der Sulfide.

Vorkommen

Antimon(III)-sulfid kommt natürlich in Form des Minerals Stibnit vor.

Gewinnung und Darstellung

Reines Antimon(III)-sulfid kann durch Reaktion von Antimon(III)-chlorid mit Thioacetamid in Ethanol[4] oder in Eisessig[5] hergestellt werden.

Antimon(III)-sulfid kann auch durch Zusammenschmelzen der Elemente gewonnen werden.[6]

$ \mathrm {2\ Sb+3\ S\longrightarrow Sb_{2}S_{3}} $

Eigenschaften

Antimon(III)-sulfid ist ein dunkelgrau bis schwarzer (kristalline Form) oder orangeroter (amorphe Form) geruchloser Feststoff, welcher praktisch unlöslich in Wasser ist. Er zersetzt sich ab einer Temperatur über 550 °C, wobei Schwefelwasserstoff entstehen kann.[1] Die orangerote Form wandelt sich beim Erhitzen unter Luftabschluß in die stabilere graue Version um.[6]

Antimon(III)-sulfid kristallisiert im orthorhombischen Kristallsystem in der Raumgruppe Pnma mit den Gitterparametern a = 1131,07 pm, b = 383,63 pm und c = 1122,85 pm. In der Elementarzelle befinden sich vier Formeleinheiten.[7]

Verwendung

Antimon(III)-sulfid wurde früher unter dem Namen Antimonschwarz als Pigment verwendet. Das Mineral ist bereits seit der Antike bekannt und wurde als schwarzer Schminkpuder zum Färben von Augenlidern und Augenbrauen verwendet. Heute wird die Verbindung noch in Streichhölzern, der Pyrotechnik, rubinrotem Glas, als Farbstoff für Kunststoffe und als Flammschutzmittel verwendet.[6]

Antimon(III)-sulfid ist ein Halbleiter mit hoher Photosensitivität, der in Fernsehkameras und verschiedenen optoelektronischen Geräten eingesetzt wurde.[4]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Eintrag zu CAS-Nr. 1345-04-6 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 10. November 2012 (JavaScript erforderlich).
  2. 2,0 2,1 2,2 2,3 Datenblatt Antimon(III)-sulfid bei Sigma-Aldrich, abgerufen am 10. November 2012.
  3. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  4. 4,0 4,1 B. Cheng, E. T. Samulski: "One-step, ambient-temperature synthesis of antimony sulfide (Sb2S3) micron-size polycrystals with a spherical morphology", in: Materials Research Bulletin, 2003, 38, S. 297–301; Volltext
  5. R. S. Mane, B. R. Sankapal, C. D. Lokhande: "Non-aqueous chemical bath deposition of Sb2S3 thin films", in: Thin Solid Films, 1999, 353 (1), S. 29–32; doi:10.1016/S0040-6090(99)00362-4.
  6. 6,0 6,1 6,2 Holleman-Wiberg: Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, Berlin 2007, ISBN 978-3-11-017770-1.
  7. P. Bayliss, W. Nowacki: "Refinement of the crystal structure of stibnite, Sb2S3", in: Zeitschrift für Kristallographie, 1972, 135, S. 308–315; Volltext.

Die cosmos-indirekt.de:News der letzten Tage

22.06.2022
Teilchenphysik
Lange gesuchtes Teilchen aus vier Neutronen entdeckt
Ein internationales Forschungsteam hat nach 60 Jahren vergeblicher Suche erstmals einen neutralen Kern entdeckt – das Tetra-Neutron.
22.06.2022
Festkörperphysik
Dunklen Halbleiter zum Leuchten gebracht
Ob Festkörper etwa als Leuchtdioden Licht aussenden können oder nicht, hängt von den Energieniveaus der Elektronen im Kristallgitter ab.
15.06.2022
Exoplaneten
Zwei neue Super-Erden in der Nachbarschaft
Unsere Sonne zählt im Umkreis von zehn Parsec (33 Lichtjahre) über 400 Sterne und eine stetig wachsende Zahl an Exoplaneten zu ihren direkten Nachbarn.
15.06.2022
Quantenphysik
Quantenelektrodynamik 100-fach genauerer getestet
Mit einer neu entwickelten Technik haben Wissenschaftler den sehr geringen Unterschied der magnetischen Eigenschaften zweier Isotope von hochgeladenem Neon in einer Ionenfalle mit bisher unzugänglicher Genauigkeit gemessen.
13.06.2022
Quantenphysik
Photonenzwillinge ungleicher Herkunft
Identische Lichtteilchen (Photonen) sind wichtig für viele Technologien, die auf der Quantenphysik beruhen.
10.06.2022
Kometen und Asteroiden | Sonnensysteme
Blick in die Kinderstube unseres Sonnensystems
Asteroiden sind Überbleibsel aus der Kinderstube unseres Sonnensystems und mit rund 4,6 Milliarden Jahren ungefähr so alt wie das Sonnensystem selbst.
07.06.2022
Galaxien | Sterne
Das Ende der kosmischen Dämmerung
Eine Gruppe von Astronomen hat das Ende der Epoche der Reionisation auf etwa 1,1 Milliarden Jahre nach dem Urknall genau bestimmt.