Guanosin-3′,5′-bispyrophosphat

Erweiterte Suche

(Weitergeleitet von PpGpp)


Strukturformel
Strukturformel von Guanosin-3′,5′-bispyrophosphat
Allgemeines
Name Guanosin-3′,5′-bispyrophosphat
Andere Namen
  • ppGpp
  • Guanosin-5′,3′-tetraphosphat
Summenformel C10H17N5O17P4
CAS-Nummer 32452-17-8
PubChem 766
DrugBank DB04022
Eigenschaften
Molare Masse 603,16 g·mol−1
Aggregatzustand

fest

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
keine Einstufung verfügbar
H- und P-Sätze H: siehe oben
P: siehe oben
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Guanosin-3′,5′-bispyrophosphat, oder ppGpp ist das Signalmolekül einer bakteriellen Stressantwort, der sogenannten stringent response. Es ist ein Derivat des Guanosindiphosphats, das am 3'-Atom der Ribose eine zusätzliche Pyrophosphatgruppe trägt.

ppGpp wurde zuerst in Escherichia coli entdeckt. In E. coli ist ppGpp ein Indikator für Nährstoffmangel.

ppGpp Kreislauf

Strukturformel des Vorläufermoleküls pppGpp.

In E. coli wird das Vorläufermolekül pppGpp von zwei ppGpp-Synthetasen aus ATP und GTP hergestellt, RelA und SpoT. RelA kann zudem direkt ppGpp herstellen. Eine 5'-Phosphohydrolase[2] spaltet den Phosphatrest von pppGpp ab. RelA ist an die Ribosomen gebunden, fungiert als Sensor für unbeladene tRNAs und synthetisiert pppGpp bei Aminosäuremangel.[3] SpoT ist ein cytosolisches Protein[4] und synthetisiert pppGpp bei Glukosemangel.[5] Im Gegensatz zu RelA baut SpoT ppGpp zu Pyrophosphat und GDP ab.[6] Die DNA-Sequenzen der relA- und spoT-Gene von E. coli sind ähnlich, somit handelt es sich um paraloge Gene. Im N-terminus finden sich jedoch Unterschiede, die sogenannte HD-Domäne; die in Hydrolasen vorkommt, ist im relA-Gen mutiert.[7] Deswegen kann RelA ppGpp nicht abbauen.

Funktion

ppGpp bindet an die RNA-Polymerase[8] und hat einen tiefgreifenden Effekt auf die Transkription verschiedener Gene. Es verringert die Transkriptionsrate an rRNA-Genen und induziert die Transkription von Genen, die an der Aminosäurebiosynthese beteiligt sind. ppGpp ist ein globaler Regulator der Genexpression in E. coli.[9]

ppGpp in anderen Bakterien

Im Gegensatz zu E. coli und vielen anderen Bakterien verfügen manche Bakterien, z. B. Bacillus subtilis und viele andere grampositive Bakterien, nur über eine einziges ppGpp metabolisierendes Enzym, das ppGpp herstellt und abbaut.[10] In vielen pathogenen Bakterien spielt ppGpp eine wichtige Rolle als globaler Regulator der Genexpression. Bei diesen Bakterien ist ppGpp sogar als Virulenzfaktor identifiziert:

Somit stellt die ppGpp-Synthese einen bisher nicht identifizierten, möglichen Angriffsort für neuartige Antibiotika dar. In Streptomyces coelicolor und anderen Streptomyceten ist ppGpp für Antibiotikabiosynthese notwendig.[19]
Bei Rhizobien ist ppGpp essentiell für die Symbiose zwischen Bakterium und Pflanze und für die Stickstofffixierung.[20][21] Bei Archaeen wurde ppGpp bisher nicht nachgewiesen.

ppGpp in Pflanzen

ppGpp kommt auch in Pflanzen vor. Es wird in den Chloroplasten synthetisiert und spielt ebenfalls eine wichtige Rolle bei der Adaptation an veränderte Umweltbedingungen.[22]

Literatur

  1. Diese Substanz wurde in Bezug auf ihre Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  2. Keasling, JD. et al. (1993): Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase. In: PNAS 90(15), 7029–7033, PMID 8394006; PMC 47069.
  3. Haseltine., W. und Block, R. (1973): Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. In: PNAS 70(5), 1564–1568, PMID 4576025; PMC 433543.
  4. Gentry, DR. und Cashel, M. (1995): Subcellular localization of the Escherichia coli SpoT protein. In: J. Bacteriol. 177(13), 3890–3893, PMID 7601859; PMC 177113.
  5. Hernandez, VJ. und Bremer, H. (1991): Escherichia coli ppGpp-synthetase II activity requires spoT. In: J. Biol. Chem. 266(9), 5991–5999, PMID 2005135; PDF (freier Volltextzugriff, engl.)
  6. Murray, KD. und Bremer, H. (1996): Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. In: J. Mol. Biol. 259(1), 41–57, PMID 8648647; doi:10.1006/jmbi.1996.0300
  7. Aravind, L. und Koonin, EV. (1998): The HD domain defines a new superfamily of metal-dependent phosphohydrolases. In: Trends Biochem Sci. 23(12), 469–472, PMID 9868367; doi:10.1016/S0968-0004(98)01293-6
  8. Artsimovitch, I. et al. (2004): Structural basis for transcription regulation by alarmone ppGpp. In: Cell 117(3), 299–310, PMID 15109491; PDF (freier Volltextzugriff, engl.)
  9. Magnusson, LU. et al. (2005): ppGpp: a global regulator in Escherichia coli. In: Trends Microbiol. 13(5), 236–242, PMID 15866041; doi:10.1016/j.tim.2005.03.008
  10. Mittenhuber, G. (2001): Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). In: J. Mol. Microbiol. Biotechnol. 3(4), 585–600, PMID 11545276
  11. Warner, DF. und Mizrahi, V. (2006): Tuberculosis chemotherapy: the influence of bacillary stress and damage response pathways on drug efficacy. In: Clin. Microbiol. Rev. 19(3), 558–570, PMID 16847086; PDF (freier Volltextzugriff, engl.)
  12. Molofsky, AB. und Swanson, MS. (2004): Differentiate to thrive: lessons from the Legionella pneumophila life cycle. In: Mol. Microbiol. 53(1); 29–40, PMID 15225301; PDF (freier Volltextzugriff, engl.)
  13. Erickson, DL. et al. (2004): Pseudomonas aeruginosa relA contributes to virulence in Drosophila melanogaster. In: Infect. Immun. 72(10), 5638–5645, PMID 15385461; PDF (freier Volltextzugriff, engl.)
  14. Bugrysheva, JV. et al. (2005): Borrelia burgdorferi rel is responsible for generation of guanosine-3'-diphosphate-5'-triphosphate and growth control. In: Infect. Immun. 73(8), 4972–4981, PMID 16041012; PDF (freier Volltextzugriff, engl.)
  15. Haralalka, S. et al. (2003): Mutation in the relA gene of Vibrio cholerae affects in vitro and in vivo expression of virulence factors. In: J. Bacteriol. 185(16), 4672–4682, PMID 12896985; PDF (freier Volltextzugriff, engl.)
  16. Taylor, CM. et al. (2002): Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. In: J. Bacteriol. 184(3), 621–628, PMID 11790730; PDF (freier Volltextzugriff, engl.)
  17. Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, Letesson JJ, De Bolle X, Kohler S. The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system VirB. Cell. Microbiol. 2006 PMID 16803581
  18. Kim S, Watanabe K, Suzuki H, Watarai M. Roles of Brucella abortus SpoT in morphological differentiation and intramacrophagic replication. Microbiology. 151, 1607-1617, 2005 PMID 15870469
  19. Martinez-Costa OH, Arias P, Romero NM, Parro V, Mellado RP, Malpartida F. A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J. Biol. Chem. 271, 10627-10634, 1996 PMID 8631867
  20. Moris M, Braeken K, Schoeters E, Verreth C, Beullens S, Vanderleyden J, Michiels J. Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J. Bacteriol. 187, 5460-5469, 2005 PMID 16030240
  21. Calderon-Flores A, Du Pont G, Huerta-Saquero, A, Merchant-Larios H, Servin-Gonzalez L, Duran S. The stringent response is required for amino acid and nitrate utilization, nod factor regulation, nodulation, and nitrogen fixation in Rhizobium etli. J. Bacteriol. 187, 5075-5083, 2005 PMID 16030199
  22. Takahashi K, Kasai K, Ochi K. Identification of the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in plants. Proc. Natl. Acad. Sci. USA, 101, 4320-4324, 2004 PMID 15010537

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
08.07.2021
Festkörperphysik - Quantenphysik
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
01.07.2021
Festkörperphysik - Teilchenphysik
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht.
29.06.2021
Planeten
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.