Okadasäure

Erweiterte Suche

Strukturformel
Struktur von Okadasäure
Allgemeines
Name Okadasäure
Andere Namen

OA

Summenformel C44H68O13
CAS-Nummer 78111-17-8
Kurzbeschreibung

weißer Feststoff[1]

Eigenschaften
Molare Masse 805,00 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

144–146 °C[2]

Löslichkeit

unlöslich in Wasser[2]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
06 – Giftig oder sehr giftig

Gefahr

H- und P-Sätze H: 301-311-315-331
P: 261-​280-​301+310-​311 [1]
EU-Gefahrstoffkennzeichnung [3][1]
Giftig
Giftig
(T)
R- und S-Sätze R: 23/24/25-38
S: 26-36/37-45
LD50

192 µg·kg−1 (Maus, intraperitoneal)[1]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Okadasäure sammelt sich in Muscheln an und verursacht eine Fischvergiftung. Die Summenformel beträgt C44H68O13.

Vorkommen

Namensgebend für die Okadasäure war der an der japanischen Pazifikküste vorkommende marine Schwamm Halichondria okadai, aus welchem Okadasäure zum ersten Mal isoliert wurde. Sie wurde außerdem aus dem in der Karibik vorkommenden Schwamm H. malanodocia als Zytotoxin isoliert.[4] Ursprünglich wird Okadasäure von zu den Dinophyten (Dinoflagellaten) zählenden marinen Algen produziert, wie etwa Dinophysis sp. oder Prorocentrum sp., die die Okadasäure in einer für sie unschädlichen Vorstufe, dem sog. Dinophysistoxin-4 produzieren. Das Dinophysistoxin-4 wird in von den Dinophyten an das umgebende Medium abgegeben oder tritt bei deren Tod aus und wird im Medium zur Okadasäurediolester hydrolysiert.

Eigenschaften

Okadasäurediolester ist fettlöslich, kann damit Biomembranen passieren und so in Zellen anderer Organismen eindringen, wo der Okadasäurediolester nochmals zur eigentlichen, toxisch wirkenden Okadasäure hydrolysiert wird.[5]

Toxikologie

Die Toxizität der Okadasäure beruht auf der Inhibition der Serin-/Threonin-spezifischen Protein-Phosphatasen des Typs 1 (PP1), 2a (PP2A) und 2b (PP2B), worauf auch die Einstufung der Okadasäure als Hepatotoxin und als Tumor-Promotor beruht. Dabei ist die Inhibitionswirkung auf die einzelnen Phosphatase-Typen konzentrationsabhängig. Am stärksten inhibiert wird die Phosphatase des Typs 2a, die bereits bei Okadasäurekonzentrationen im Bereich von 1 nM zu 50 % inhibiert wird (IC50).[6] Der IC50 für PP1 liegt bei 0,3 - 1 μM [6] und für PP2B bei über 1 μM.[7] So induziert Okadasäure bspw. eine dauerhafte Muskelkontraktion, da die Dephosphorylierung des an der Kontraktion beteiligten Proteins Myosins durch die Serin-/Threonin-spezifischen Protein-Phosphatasen nicht mehr stattfinden kann.[6]

Die letale Konzentration der Okadasäure bei Mäusen (LD50) beträgt 192 μg/kg, ip. (intraperitoneal)

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 Datenblatt Okadaic acid from Prorocentrum concavum bei Sigma-Aldrich, abgerufen am 16. April 2011.
  2. 2,0 2,1 Datenblatt Okadasäure bei Acros, abgerufen am 20. Februar 2010.
  3. Seit 1. Dezember 2012 ist für Stoffe ausschließlich die GHS-Gefahrstoffkennzeichnung zulässig. Bis zum 1. Juni 2015 dürfen noch die R-Sätze dieses Stoffes für die Einstufung von Zubereitungen herangezogen werden, anschließend ist die EU-Gefahrstoffkennzeichnung von rein historischem Interesse.
  4. Kazuo Tachibana, Paul J. Scheuer, Yasumasa Tsukitani, Hiroyuki Kikuchi, Donna Van Engen, Jon Clardy, Yalamanchili Gopichand und Francis J. Schmitz: Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. In: Journal of the American Chemical Society, 1981, 103, 9, S. 2469–2471, doi:10.1021/ja00399a082.
  5. Robert Edward Lee: Phycology 4th Edition, Cambridge University Press, New York 2008, ISBN 978-0-521-68277-0.
  6. 6,0 6,1 6,2 Ishihara H, Martin BL, Brautigan DL, Karaki H, Ozaki H, Kato Y, Fusetani N, Watabe S, Hashimoto K, Uemura D, et al.: Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. in: Biochemical and Biophysical Research Communications, 31. März 1989, 159, 3, S. 871-877.
  7. Prof. Dr. H. Ibelgaufts Okadaic Acid Abgerufen am 7. Juli 2010.

Literatur

  • Robert Edward Lee: Phycology 4th Edition, Cambridge University Press, New York 2008, ISBN 978-0-521-68277-0.
  • C. J. Forsyth, R. A. Urbanek: An Efficient Total Synthesis of Okadaic Acid. In: Journal of the American Chemical Society, 1997, 119, 35, S. 8381–8382, doi:10.1021/ja9715206.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?