Myotoxin

Erweiterte Suche

Dreidimensionale Struktur von Crotamin, einem Myotoxin, das auf Natriumkanäle wirkt, nach PDB 1H5O.[1] Die Cysteine, die Disulfidbrücken ausbilden, wurden hervorgehoben.

Myotoxin (aus altgriech. μῦς mys, Gen. μυός myos ‚Muskel‘ und τοξίνη, altgriechisch ausgesprochen toxíne ‚die giftige Substanz‘, zusammen genommen Muskelgift) ist ein Schlangengift-Peptid mit muskellähmender und -zerstörender Funktion. Speziell im Gift der Klapperschlangen (Crotalus) findet man verschiedene, homologe Peptide, die diese Funktion aufweisen.

Geschichte

Crotalus durissus terrificus (Schauer-Klapperschlange)

Der brasilianische Wissenschaftler José Moura Gonçalves reinigte und identifizierte in den 1950er Jahren das erste Myotoxin, Crotamin, aus dem Gift der Schauer-Klapperschlange (Crotalus durissus terrificus), einer tropischen Klapperschlange, die in Südamerika heimisch ist.

Struktur und Funktion

Strukturell sehr ähnliche Myotoxine – alle sind kleine, basische Peptide mit Molekülmassen um 4,5 kDa, isoelektrischen Punkten (pI) um 9,8 und strukturstabilisiert durch drei Disulfidbrücken – liegen im Gift von Grubenottern und Vipern vor.[2][3] Die Myotoxine führen beim Beutetier zu einer Muskellähmung (Myotoxizität) und verhindern die Flucht. Innerhalb von Minuten tritt dann der Tod durch Lähmung der Bauchatmung ein sowie durch einen weiteren nicht-enzymatischen Mechanismus, der zum lokalen Absterben des Muskelgewebes (Myonekrose) führt.

Sequenzhomologie

Myotoxine aus verschiedenen Schlangengiften sind vor allem in den 1960er bis 1980er Jahren isoliert und charakterisiert worden. Der Vergleich ihrer Aminosäuresequenzen zeigt einen hohen Grad an Sequenzhomologie und den auch in den Abständen konservativen Erhalt der drei Cystine (sechs Cysteine, die drei Disulfidbrücken bilden: Cys4-Cys36, Cys11-Cys30 und Cys18-Cys37[4]), die die Struktur des Myosinmoleküls stabilisieren (gelb: Cystein; grün: homologe (identische) Aminosäuresequenz):

Bezeichnung
Aminosäuresequenz (Einbuchstabencode) Spezies (Crotalus)
Crotamin[5] YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG C. durissus terrificus
Myotoxin I[6] YKRCHKKEGHCFPKTVICLPPSSDFGKMDCRWKWKCCKKGSVN C. viridis concolor
Myotoxin II[6] YKRCHKKGGHCFPKEKICTPPSSDFGKMDCRWKWKCCKKGSVN C. viridis concolor
Myotoxin II m.[6] YKRCHKKGGHCFPKTVICLPPSSDFGKMDCRWRWKCCKKGSVN C. viridis concolor
Peptid c[7] YKRCHKKGGHCFPKTVICLPPSSDFGKMDCRWKWKCCKKSVN C. viridis helleri
Myotoxin a[8] YKQCHKKGGHCFPKEKICIPPSSDLGKMDCRWKWKCCKKGSG C. viridis viridis
CAM[9] YKRCHKKGGHCFPKTVICLPPSSDFGKMDCRWRWKCCKKGSVNN C. adamanteus

Einzelnachweise

  1. G. Nicastro, L. Franzoni, C. de Chiara, A. C. Mancin, J. R. Giglio, A. Spisni Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom (PDF), Eur J Biochem 270 (9), S. 1969–1979 (2003). PMID 12709056.
  2. P. R. Griffin, S. D. Aird A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis), FEBS Lett., Vol. 274, S. 43–47 (1990). PMID 2253781.
  3. Y. Samejima, Y. Aoki, D. Mebs Amino acid sequence of a myotoxin from venom of the eastern diamondback rattlesnake (Crotalus adamanteus), Toxicon, Vol. 29, S. 461–468 (1991). PMID 1862521.
  4. V. Fadel, P. Bettendorff, T. Herrmann, W. F. de Azevedo Jr., E. B. Oliveira, T. Yamane und K. Wüthrich Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus, Toxicon (2005) 1;46(7):759–767. PMID 16185738.
  5. J. C. Laure Die Primärstruktur des Crotamins, Hoppe-Seylers Z. Physiol. Chem. (1975), Band 246, S. 799–803. doi:10.1515/bchm2.1975.356.1.213
  6. 6,0 6,1 6,2 A. L. Bieber, R. H. McParland und R. R. Becker Amino acid sequences of myotoxins from „Crotalus viridis concolor“ venom, Toxicon (1987), Band 25, S. 677–680. PMID 3629618.
  7. N. Maeda und N. Tamiya Some chemical properties of the venom of the rattlesnake, „Crotalus viridis helleri“, Toxicon (1978), Band 16, S. 431–441. PMID 694946.
  8. J. W. Fox, M. Elzinga und A. T. Tu Amino acid sequence and disulfide bond assignment of myotoxin a isolated from the venom of prairie ratttlesnake („Crotalus viridis viridis“), Biochemistry (1979), Band 18, S. 678–684. PMID 570412.
  9. Y. Samejima, Y. Aoki und D. Mebs Structural studies on a myotoxin from „Crotalus adamanteus“ venom in Progress in Venom and Toxin Research (1988), S. 186–187, P. Gopalakkrishnakone und C. K. Tan (Hrsg.), Natl. Univ. Singapore Press, Singapore.

Literatur

  • Alan L. Harvey (Hrsg.): Snake Toxins, International Encyclopedia of Pharmacology and Therapeutics, Sect. 134, Pergamon Press, New York, Oxford, Beijing, Frankfurt, São Paulo, Sydney, Tokyo, Toronto 1991, S. 70–71 (allgemein), S. 118–119 (Mechanismus), S. 120–121 (Struktur/Aktivität); S. 394–395 (Klonierung); S. 435 (Sequenzen).

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

16.06.2021
Sterne
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
15.06.2021
Festkörperphysik - Quantenphysik - Teilchenphysik
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
15.06.2021
Festkörperphysik - Quantenoptik
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
14.06.2021
Galaxien
Entdeckung der größten Rotationsbewegung im Universum
D
11.06.2021
Sonnensysteme - Planeten - Sterne
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
09.06.2021
Galaxien - Sterne - Schwarze_Löcher
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
09.06.2021
Monde - Astrobiologie
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern.
03.06.2021
Planeten - Astrophysik - Elektrodynamik
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
03.06.2021
Festkörperphysik - Quantenphysik
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
03.06.2021
Supernovae - Astrophysik - Teilchenphysik
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.