Linienverbreiterung

Erweiterte Suche

Eine Linienverbreiterung (auch als Verbreiterungsmechanismus bezeichnet) ist in der Physik die meist unerwünschte Vergrößerung der Linienbreite einer Spektrallinie der Strahlung-emittierenden Systeme. Die minimale Breite, die aus der Energie-Zeit-Unschärferelation folgt, ist die natürliche Linienbreite. Aus diesem Grund zählt diese Breite nicht zu den Linienverbreiterungen.

Übersicht

Es werden homogene und inhomogene Verbreiterungsmechanismen unterschieden. Bei homogenen Verbreiterungen ist die Emissionswahrscheinlichkeit für eine bestimmte Frequenz $ \omega $ für alle Teilchen gleich groß. Bei inhomogenen Verbreiterungen ist diese Wahrscheinlichkeit nicht gleich.

Folgende Tabelle gibt einen Überblick über die verschiedenen Verbreiterungsmechanismen.

Verbreiterung Erklärung
Homogene Mechanismen
Druckverbreiterung (auch Stoßverbreiterung) Entsteht bei Stößen (elastisch und inelastisch) zwischen den Teilchen.
Sättigungsverbreiterung Ist abhängig von der eingestrahlten Laserintensität.
Inhomogene Mechanismen
Dopplerverbreiterung Folgt aus dem optischen Dopplereffekt bei relativ zum Laser bewegten Teilchen.
Flugzeitverbreiterung Tritt auf bei Wechselwirkungszeiten, die kürzer als die natürliche Lebensdauer sind (z.B. wenn die zu vermessenden Teilchen den Laserstrahl mit hoher Geschwindigkeit kreuzen).

Linienverbreiterungen auf Röntgen-, Elektronen- und Neutronenbeugungsaufnahmen können auch durch innere Spannungen der Probe oder dadurch verursacht sein, dass nur ein sehr kleiner Bereich (< 10-5 cm) kohärent streut. Dies wird in der röntgenographischen Spannungsmessung angewandt.

Die auch bei einem fast fehlerfreien Kristall zu erwartende Linienbreite kann durch derartige Effekte verbreitert werden. Auch Stapelfehler und andere Abweichungen von der idealen Kristallstruktur haben einen Einfluss auf das Linienprofil. Das Maß der Verbreiterung erhält man, indem man

  1. eine Vergleichsmessung mit einer Probe durchführt, die diesen Effekt nicht zeigt;
  2. die durch die Versuchsanordnung bedingte Breite rechnerisch berücksichtigt.

Die Linienverbreiterung kann mit verschiedenen Verfahren ausgewertet werden. Für das Linienprofil werden dabei spezielle Funktionen vorausgesetzt, z. B. eine Gauß-Verteilung oder die Cauchy-Verteilung. Mit Hilfe solcher Verfahren ist es möglich, die Linienverbreiterung in einen Gitterverzerrungs- und einen Teilchengrößenanteil zu zerlegen.

Bei der mathematisch aufwendigeren Warren-Averbach-Methode führt man eine Fourier-Analyse des Linienprofils durch, die zu einer Verteilungsfunktion für die Gitterverzerrung und die Teilchengrößen führt.

Weiterführendes

Die cosmos-indirekt.de:News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.