Druckverbreiterung

Die Druckverbreiterung ist ein physikalischer Effekt, welcher das Lichtspektrum eines Stoffes beeinflusst.

In der Theorie führen Übergänge zwischen den verschiedenen diskreten Energieniveaus eines Moleküls zur Aussendung bzw. Absorption von Photonen einer ganz bestimmten Energie, also einer bestimmten Wellenlänge. Demzufolge bestünde das Lichtspektrum nur aus einigen diskreten Linien. In der Realität wird aber für jeden Übergang nicht nur eine einzelne Wellenlänge gemessen. In einem realen Spektrum wird immer eine Schar von Wellenlängen um den eigentlichen Übergang herum registriert, man spricht auch von einer „spektralen Unschärfe“.

Neben der natürlichen Linienbreite und der Dopplerverbreiterung ist dafür auch die Druckverbreiterung eine Ursache. Dabei beschreibt die Druckverbreiterung den Anteil dieser spektralen Unschärfe, welcher aufgrund der Wechselwirkung mit anderen Atomen entsteht. Nur bei Linien mit geringer natürlicher Linienbreite, also einem zeitlich ausgedehnten Abstrahlungs- oder Absorptionsvorgang, ist die Druckverbreiterung relevant. Wenn während dieses Übergangs das Molekül durch einen Stoß mit einem anderen Teilchen wechselwirkt, dann kommt es zu einer kurzen Frequenzänderung, was den Effekt hat, dass die Phase der Schwingung nach dem Stoß nicht mehr zu der Phase davor passt. Bei hohem Druck gibt es viele Stöße. Dann bestimmt nicht mehr die Dauer des Strahlungsprozesses, sondern die mittlere Zeit zwischen Stößen die Frequenzschärfe. Dieser Effekt wird auch als Stoßverbreiterung bezeichnet.

Diese einfache Beschreibung gilt nur für kurzreichweitige Wechselwirkungen zwischen den Teilchen. Die statistische Verteilung der Stöße führt dann zu einem Lorentz-Profil, in Kombination mit der Doppler-Verbreiterung zu einem Voigt-Profil. Bei langreichweitigen Wechselwirkungen sind Abweichungen zu beobachten. Es gibt dann insbesondere eine sogenannte statische Druckverbreiterung durch die bloße Anwesenheit von Nachbarn. Diese nimmt anders als die Stoßverbreiterung nicht mit der Temperatur zu.

Literatur

  • Klaus Kleinermanns (Herausgeber) Bergmann, Schaefer Lehrbuch der Experimentalphysik, Band 5 (Gase, Nanosysteme, Flüssigkeiten), de Gruyter 2006, S. 325 (Uwe Riedel, Christof Schulz, Jürgen Warnatz, Jürgen Wolfrum, Kapitel 3 Verbrennung)

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.