Kryolith

Erweiterte Suche

Kryolith
Kryolith mit Siderit, Galenit und Chalkopyrit - Jvigtut, Grönland.jpg
Kryolith mit Siderit, Galenit und Chalkopyrit aus Jvigtut, Grönland
Chemische Formel

Na3[AlF6]

Mineralklasse Halogenide
3.CB.15 (8. Auflage: III/B.03) nach Strunz
11.06.01.01 nach Dana
Kristallsystem monoklin
Kristallklasse; Symbol nach Hermann-Mauguin monoklin-prismatisch $ \ 2/m $
Farbe weiß, braun, grau, braun-schwarz, rötlich
Strichfarbe weiß
Mohshärte 2,5
Dichte (g/cm3) 2,96 bis 2,98 [1]
Glanz feuchter Glasglanz, Fettglanz, Perlmuttglanz
Transparenz durchsichtig bis durchscheinend
Bruch uneben
Spaltbarkeit keine
Habitus pseudokubische Kristalle, massige Aggregate
Zwillingsbildung nach {110}
Kristalloptik
Brechungsindex α=1,339 bis 1,339 ; β=1,339 bis 1,339 ; γ=1,340 bis 1,340 [1]
Doppelbrechung
(optischer Charakter)
δ = 0,001 [1] ; zweiachsig positiv
Optischer Achsenwinkel 2V = 43°
Pleochroismus keiner
Weitere Eigenschaften
Schmelzpunkt 1012 °C
Ähnliche Minerale Anhydrit, Fluorit, Halit

Kryolith (Aluminiumtrinatriumhexafluorid, Natriumhexafluoridoaluminat(III)) ist ein eher selten vorkommendes Mineral aus der Mineralklasse der Halogenide. Es kristallisiert im monoklinen Kristallsystem mit der chemischen Zusammensetzung Na3[AlF6] [2] und entwickelt entweder pseudokubische Kristalle oder massige Aggregate in weißer, brauner, grauer, braun-schwarzer oder rötlicher Farbe.

Besondere Eigenschaften

Bei einer Temperatur von etwa 560 °C wechselt Kryolith in das kubische Kristallsystem über. Aufgrund dieser Eigenschaft ist das Mineral ein wichtiges geologisches Thermometer zur Klärung der Bildungsbedingungen von Gesteinen. Beim Glühen in einer offenen Glasröhre entwickelt sich Fluorwasserstoff (HF).[3]

Kryolith ist in konzentrierter Schwefelsäure vollständig lösbar, in Salzsäure dagegen nur teilweise.[3]

Etymologie und Geschichte

Kryolithmine in Ivittuut (Grönland) im Sommer 1940

Erstmals gefunden und beschrieben wurde Kryolith 1799 in Ivigtut in Grönland von Peder Christian Abildgaard (1740-1801). Er benannte das Mineral aufgrund seines charakteristischen Aussehens nach den griechischen Worten κρύος [krúos] „Frost, Eis“ (im deutschen Wort „(Eis)kruste“ über das lateinische „crusta“ und althochdeutsche „hroso“ für „Kruste, Eis“ noch zu finden; verwandt mit Tocharisch A „krost“ für „kalt“) und λίθος [lítʰos] „Stein“ (Etymologie unklar), zusammengesetzt also „Eis-Stein“.

Klassifikation

Nach der alten Systematik der Minerale nach Strunz (8. Auflage) gehört der Kryolith zu den wasserfreien Doppelhalogeniden. Diese Mineralklasse ist jedoch seit der 9. Auflage der Strunzschen Mineralsystematik neu strukturiert und die Klassifizierung der komplexen Halogenide orientiert sich jetzt mehr an der Kristallstruktur. Kryolith findet sich demnach in der Unterabteilung „Insel-Aluminofluoride (Neso-Aluminofluoride)“.


Bildung und Fundorte

Kryolith bildet sich als Gangmineral vor allem in zinnführenden Granit-Pegmatiten und in fluoritreichen, topashaltigen Rhyolithen.

Der wichtigste abbauwürdige Fundort Ivigtut (Kitaa) in Grönland ist inzwischen erschöpft. Abgebaut wurde Kryolith dort zwischen 1865 und 1987. Daneben wurde das Mineral noch an folgenden Orten entdeckt:

  • In nördlichen und südlichen Regionen von Brasilien;
  • Sachsen in Deutschland;
  • Québec in Kanada;
  • bei Semei in Kasachstan;
  • Khomas und Kunene in Namibia;
  • Bauchiplateau in Nigeria;
  • Oppland in Norwegen;
  • die Regionen Ostsibirien, Nordwestrussland und Ural in Russland;
  • Aragonien in Spanien;
  • Böhmen in Tschechien;
  • Oblast Schytomyr in der Ukraine; sowie
  • mehrere Regionen in den USA.[4]

Synthetische Herstellung

Die Synthese erfolgt aus Hexafluoridokieselsäure und Natriumaluminat.

$ \mathrm {H_{2}SiF_{6}+6\ NH_{3}+2\ H_{2}O\longrightarrow 6\ NH_{4}F+SiO_{2}} $
$ \mathrm {6\ NH_{4}F+3\ NaOH+Al(OH)_{3}\longrightarrow Na_{3}[AlF_{6}]+6\ NH_{3}+6\ H_{2}O} $


Kristallstruktur

Elementarzelle von Kryolith

Kryolith kristallisiert im monoklinen Kristallsystem in der Raumgruppe P21/a mit den Gitterparametern a = 5,4024 Å; b = 5,5959 Å, c = 7,7564 Å und β = 90,278 ° sowie zwei Formeleinheiten pro Elementarzelle.[5] Hierbei kommt es zu einer Gitterverzerrung.[6]

Verwendung

Eine großtechnische Anwendung von Kryolith ist die Schmelzflusselektrolyse zur Gewinnung von Aluminium (Hall-Héroult-Prozess). Dort wird die Eigenschaft des relativ niedrigen Schmelzpunktes von Kryolith (1012 °C) genutzt. Aluminiumoxid (Korund), der Ausgangsstoff der Elektrolyse, hat eine Schmelztemperatur von 2050 °C. Für die Schmelzflusselektrolyse wird die eutektische Mischung verwendet. Sie besteht aus 10,5 % Al2O3 und Na3[AlF6]. Der Schmelzpunkt des Eutektikums liegt dann bei 960 °C. Erst diese relativ niedrige Arbeitstemperatur ermöglicht die großtechnische Anwendung der Schmelzflusselektrolyse.

Kryolith wird weiter in der Gießereiindustrie eingesetzt. Dem Formstoff beim Gießen kann Kryolith beigemischt werden. Dieses Beimischen kann jedoch die Oberflächenqualität des Werkstücks negativ beeinflussen.

Synthetisch hergestelltes Kryolith findet in der Hülle von Schweißelektroden als Flussmittel Verwendung.

Kryolith wird außerdem als schleifaktive Substanz in kunstharzgebundenen Schleifmitteln sowie in Schleifmitteln auf Unterlagen genutzt. Aufgrund der hohen Temperaturen, die beim Schleifen an der Spitze des Schleifkorns auftreten, schmilzt das Kryolith. Dabei korrodiert das geschmolzene Kryolith den abgeschliffenen Stahlspan und verhindert damit ein Zusetzen des Schleifkörpers.

Problematisch ist das Auftreten von Kryolith bei der Zinkphosphatierung von zum Beispiel Aluminium-Automobilkarossen oder feuerverzinkten Oberflächen. Aluminium wird hierbei im Phosphatierbad als Kryolith ausgefällt und muss wieder herausgefiltert werden.

Kryolith wird auch zur Herstellung optisch hochreflektiver Oberflächen verwendet. Es wird dabei in dünnen Schichten abwechselnd mit einem anderen Stoff, zum Beispiel Zinkselenid, im Vakuum aufgedampft (Vielschichtspiegel in der Lasertechnik).

Im Kryolithglas, das zur Herstellung von Augenprothesen verwendet wird, sorgt es für eine milchig-weiße Trübung des Glases.

Vorsichtsmaßnahmen

GHS-Gefahrstoffkenzeichnung[7]
08 – Gesundheitsgefährdend 07 – Achtung 09 – Umweltgefährlich
GHS-Signalwort Achtung
H-Sätze 372-332-411
EU-Gefahrstoffkenzeichnung[8]
Giftig Umweltgefährlich
Giftig Umwelt-
gefährlich
(T) (N)
R-Sätze 20/22-48/23/25-51/53
S-Sätze (1/2)-22-37-45-61

Das Mineral bzw. die chemische Verbindung wird als giftig und umweltgefährlich eingestuft. Gesundheitsschädlich ist vor allem das Einatmen und Verschlucken von Kryolithteilchen, die akut zu Beschwerden im Atemstrakt mit funktioneller Dyspnoe (erschwerte Atemtätigkeit) und schließlich Lungenemphysem (Überblähung der Lungenbläschen) führen können. Des Weiteren sind Appetitlosigkeit, Übelkeit, Erbrechen und Verstopfung die Folge.[7]

Längerfristig hat Kryolith eine toxische Wirkung auf Knochen, Zähne und Nieren.

Einzelnachweise

  1. 1,0 1,1 1,2 MinDat - Cryolite (engl.)
  2.  Stefan Weiß: Das große Lapis Mineralienverzeichnis. 5. Auflage. Christian Weise Verlag, München 2008, ISBN 3-921656-17-6.
  3. 3,0 3,1 Klockmanns Lehrbuch der Mineralogie (1976), S.491 (siehe Literatur)
  4. MinDat - Localities for Cryolite (engl.)
  5. American Mineralogist Crystal Structure Database - Cryolite (AlF6Na3)
  6. U. Müller: Anorganische Strukturchemie. 6. Auflage. Vieweg+Teubner, 2008, ISBN 978-3-8348-0626-0 S. 298
  7. 7,0 7,1 Eintrag zu Natriumhexafluoroaluminat in der GESTIS-Stoffdatenbank des IFA, abgerufen am 29.10.2012 (JavaScript erforderlich)Vorlage:GESTIS/ohne ZVG
  8. Eintrag im European chemical Substances Information System ESIS (CAS-Nr. 15096-52-3 muss dort händisch eingetragen werden)

Literatur

  •  Petr Korbel, Milan Novák: Mineralien Enzyklopädie. Nebel Verlag GmbH, Eggolsheim 2002, ISBN 3-89555-076-0, S. 67.
  •  Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Ferdinand Enke Verlag, 1978, ISBN 3-432-82986-8, S. 490,491.
  • Riedel, E. (2002). Anorganische Chemie. de Gruyter, Berlin.
  • Holleman-Wiberg (1995). Lehrbuch der Anorganischen Chemie. de Gruyter, Berlin.
  • American Mineralogist; January 2006; v. 91; no. 1; p. 97-103; DOI: 10.2138/am.2006.1772

Weblinks

 Commons: Cryolite – Sammlung von Bildern, Videos und Audiodateien

Vorlage:Commonscat/WikiData/Difference

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.