Eutektikum

Zustandsschaubild (Phasendiagramm) eines eutektischen Systems

Eutektikum (griechisch εὐ eu- gut, τήκω teko schmelzen) ist ein Phasengleichgewicht, das sich dadurch auszeichnet, dass sich die Umgebungsbedingungen (Freiheitsgrade) nur in einem sehr kleinen Bereich frei wählen lassen. Häufigste Darstellung eines Eutektikums ist in einem Phasendiagramm mit nur zwei Freiheitsgraden, nämlich Temperatur und Konzentration der beteiligten Komponenten, siehe Abbildung. Im Eutektischen Punkt (wo sich Solidus- und Liquiduslinie berühren) sind drei Phasen des Systems im Gleichgewicht (in diesem Beispiel Schmelze, A & B), diese Erscheinung nennt man das Eutektikum. Es gibt auch andere Erscheinungsformen mit ähnlichen Namen, z. B. sobald die beteiligten Phasen alle im festen Aggregatzustand vorliegen nennt man das Eutektoid. Das grundlegende Prinzip ändert sich dabei nicht.

Eutektische Legierungen

Eigenschaften

Eutektische Legierungen haben einen eindeutig bestimmbaren Schmelzpunkt. Andere Mischungsverhältnisse mit denselben Bestandteilen weisen dagegen einen Schmelz- bzw. Erstarrungsbereich auf, in dem neben der Schmelze auch eine feste Phase vorliegt. Ihr Schmelzpunkt ist zudem der niedrigste aller Mischungen aus denselben Bestandteilen.

Aufgrund der Tatsache, dass alle Bestandteile gleichzeitig erstarren und dies bei einer viel niedrigeren Temperatur geschieht als dies bei den reinen Komponenten der Fall wäre, entsteht ein feines und gleichmäßiges Gefüge, das in der Regel charakteristische lamellare Struktur aufweist. Ursache dafür ist die bei dieser Temperatur niedrige Bewegungsenergie der Atome, die nur kurze Wege und damit nur die Bildung sehr kleiner Kristalle (auch Kristallite genannt) zulässt.

Verwendung

Ein technisch häufig genutztes Eutektikum ist z. B. der Ledeburit des Fe-C Systems (4,3 % C/1147 °C) das zum Gießen von Grauguß genutzt wird. Ein technisch häufig genutzter Eutektoid ist z. B. der Perlit des Fe-C Systems (0,80 % C/723 °C).

Da der Schmelzpunkt einer eutektischen Legierung deutlich unter dem der reinen Metalle liegt, werden solche Legierungen bevorzugt zum Löten verwendet. Dies hat den Vorteil, dass man relativ wenig Wärme einbringen muss und bei der Wahl des Lotes die Materialverwandtschaft von Lot und Fügepartner nutzen kann.

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Weiterhin nutzt man den herabgesetzten Schmelzpunkt zum Erstellen von Legierungen, bei denen die Schmelzpunkte der beiden Komponenten weit auseinander liegen. Dies ist zum Beispiel bei Aluminium (Schmelzpunkt 660 °C) und Wolfram (Schmelzpunkt 3422 °C) der Fall. Versuchte man, eine Aluminium-Wolfram-Legierung direkt herzustellen, indem man beide Bestandteile einfach „in einen Topf wirft“ und erhitzt, so wäre das Aluminium bereits verdampft, ehe das Wolfram geschmolzen ist. Fertigt man jedoch erst eine Vorlegierung aus Wolfram und einem Metall mit hohem Schmelzpunkt an, ist die Herstellung möglich. Bedingt durch die Vorbehandlung entstehen so natürlich keine reinen Legierungen.

Beispiele für Eutektika sind das System Sn-Pb („Lötzinn“) z. B. mit einer Zusammensetzung von 62/38, das System Ag-Cu (Silber-Kupfer-Legierung) mit einer Zusammensetzung von 72/28, Roses Metall, das Woodsche Metall, bestimmte Quarzporphyre oder eine Lösung von 30,9 g Kochsalz auf 100 g Wasser (Kryohydrat). Verwendung finden diese gut schmelzenden Legierungen in Sprinkleranlagen, als Lötlegierungen oder in Scherzartikeln.

Einen besonders niedrigen Schmelzpunkt weist die als Galinstan bekannte eutektische Legierung aus 68 bis 69 % Gallium, 21 bis 22 % Indium und 9,5 bis 10,5 % Zinn auf, die erst bei −19,5 °C kristallisiert und in quecksilberfreien, analogen Fieberthermometern verwendet wird.

Siehe auch

Literatur

  •  Dieter Kohtz: Einführung in die Werkstoffkunde für Metallschweißer. In: Der Praktiker: das Magazin für Schweißtechnik und mehr. 9/1982 bis 1/1985, DVS-Verlag, ISSN 0554-9965.

Weblinks

 Commons: Eutektikum – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
19.01.2021
Sonnensysteme - Sterne - Biophysik
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
19.01.2021
Quantenoptik - Teilchenphysik
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
15.01.2021
Sterne - Strömungsmechanik
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
A
14.01.2021
Thermodynamik
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.