Gaylussit

Erweiterte Suche

Gaylussit
Gaylussit - Lagunillas, Venezuela.jpg
Chemische Formel

Na2Ca[CO3]2 • 5 H2O

Mineralklasse Carbonate
5.CB.35 (8. Auflage: V/D.02) nach Strunz
15.02.02.01 nach Dana
Kristallsystem monoklin
Kristallklasse; Symbol nach Hermann-Mauguin monoklin-prismatisch $ \ 2/m $
Farbe farblos, weiß, grau, gelblich
Strichfarbe weiß
Mohshärte 2,5 bis 3
Dichte (g/cm3) 2
Glanz Glasglanz
Transparenz durchsichtig bis durchscheinend
Bruch muschelig, sehr spröde
Spaltbarkeit vollkommen
Habitus tafelige bis prismatische oder dipyramidale Kristalle
Häufige Kristallflächen {110}, {011}, {011}
Kristalloptik
Brechungsindex nα = 1,444 ; nβ = 1,516 ; nγ = 1,523 [1]
Doppelbrechung
(optischer Charakter)
δ = 0,079 [1] ; zweiachsig negativ
Optischer Achsenwinkel 2V = 34° [1]
Weitere Eigenschaften
Chemisches Verhalten leicht löslich in verd. Säuren unter CO2-Abgabe
Ähnliche Minerale Natrit, Thermonatrit, Pirssonit, Trona

Gaylussit ist ein eher selten vorkommendes Mineral aus der Mineralklasse der Carbonate (und Nitrate)[*]. Es kristallisiert im monoklinen Kristallsystem mit der chemischen Zusammensetzung Na2Ca[CO3]2 • 5 H2O.

In der Natur kommt Gaylussit meist in Form tafeliger bis prismatischer oder dipyramidaler Kristalle vor, die entweder farblos oder von weißer, grauer und gelblicher Farbe sind.

Besondere Eigenschaften

Gaylussit schmilzt vor der Lötlampe und in Wasser gelöst spaltet sich Na2CO3 ab.

Etymologie und Geschichte

Erstmals gefunden wurde Gaylussit 1826 bei Lagunillas/Mérida in Venezuela und beschrieben durch Jean-Baptiste Boussingault (1802-1887), der das Mineral nach dem wegen seiner Gasgesetze bekannten französischen Chemiker und Physiker Joseph Louis Gay-Lussac (1778-1850) benannte.

Klassifikation

In der mittlerweile veralteten 8. Auflage der Systematik der Minerale nach Strunz gehört der Gaylussit noch zur gemeinsamen Mineralklasse der „Carbonate, Nitrate und Borate“ und dort zur Abteilung der „Wasserhaltigen Carbonate ohne fremde Anionen“, wo er mit Baylissit, Chalkonatronit, Pirssonit, Soda, Thermonatrit und Trona eine eigene Gruppe bildet.

Nach Umfangreichen Überarbeitungen der Strunz'schen Mineralsystematik wurden in der 9. Auflage unter anderem die Borate ausgegliedert und bilden nun eine eigene Klasse. Der Gaylussit ist jedoch nach wie vor den „Wasserhaltigen Carbonaten ohne fremde Anionen“ zugeordnet, die allerdings präziser nach Art und Größe der beteiligten Kationen unterteilt sind. Das Mineral steht damit entsprechend in der Unterabteilung „Mit großen Kationen (Alkali- und Erdalkali-Carbonaten)“.

Die im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Gaylussit wie die 8. Auflage der Strunz'schen Systematik in die gemeinsame Klasse der „Carbonate, Nitrate und Borate“ und dort in die Abteilung der „Wasserhaltigen Carbonate mit der allgemeinen Formel A+mB2+n(XO3)p • x(H2O) und dem allgemeinen Stoffmengenverhältnis (m+n) : p > 1 : 1“

Bildung und Fundorte

Gaylussit bildet sich durch Sedimentation vorwiegend in Evaporiten, aber auch in Tonschiefersedimenten von Alkaliseen und findet sich dort in Paragenese mit verschiedenen Mineralen wie unter anderem Aegirin, Northupit, Pektolith, Pirssonit, Shortit, Thermonatrit, Trona und Villiaumit.

Bisher konnte Gaylussit an knapp 40 Fundorten nachgewiesen werden (Stand: 2009)[2], so neben seiner Typlokalität Lagunillas in Venezuela unter anderem noch bei Laguna Santa Maria (Salta) in Argentinien; am Tschadsee in Westafrika; am Chabyêr Caka (Zabuye-Salzsee) in Tibet; im „Wadi el Natrun“ in der Sketischen Wüste (Sahara, Afrika); in der italienischen Toskana; am alkalische „Amboseli-See“ im kenianischen Amboseli-Nationalpark; am Chicxulub-Krater in Mexiko; in der mongolischen Wüste Gobi; auf der Halbinsel Kola in Russland; bei Dolný Harmanec (Niederhermanetz) in der Slowakei; im „Salzpfannen Krater“ bei Pretoria in Südafrika; in Salzbergwerk bei Bex in der Schweiz sowie in den US-amerikanischen Regionen Kalifornien, Nevada, Oregon, Washington und Wyoming.


Kristallstruktur

Gaylussit kristallisiert monoklin in der Raumgruppe C2/c mit den Gitterparametern a = 14,361 Å; b = 7,781 Å; c = 11,209 Å und β = 127,84° [3] sowie vier Formeleinheiten pro Elementarzelle.


Siehe auch

Einzelnachweise

  1. 1,0 1,1 1,2 Mindat - Gaylussite (englisch)
  2. Mindat - Localities for Gaylussite
  3. American Mineralogist Crystal Structure Database - Gaylussite (englisch)

Literatur

  •  Petr Korbel, Milan Novák: Mineralien Enzyklopädie. Nebel Verlag GmbH, Eggolsheim 2002, ISBN 3-89555-076-0, S. 126.
  •  Paul Ramdohr, Hugo Strunz: Klockmanns Lehrbuch der Mineralogie. 16. Auflage. Ferdinand Enke Verlag, 1978, ISBN 3-432-82986-8, S. 582.

Weblinks

 Commons: Gaylussite – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?