Knallgas

Explosionsgefährlich

Knallgas, im englischen Sprachraum auch Oxyhydrogen genannt, ist eine detonationsfähige Mischung von gasförmigem Wasserstoff (H2) und Sauerstoff (O2). Beim Kontakt mit offenem Feuer (Glut oder Funken) erfolgt die sogenannte Knallgasreaktion. In Luft unter atmosphärischem Druck muss der Volumenanteil des Wasserstoffs dabei zwischen 4 und 77 % liegen. Werden diese Grenzwerte unter- bzw. überschritten, kommt es nicht mehr zu einer Explosion/Detonation. Bei einer kontrollierten Verbrennung kommt es zu einer Knallgasflamme.

Herstellung

Hofmannscher Elektrolyseapparat

Knallgas lässt sich durch die Wasserelektrolyse, also der elektrolytische Zersetzung von Wasser (H2O) oder durch die thermische Zersetzung von Wasser herstellen. Die thermische Zersetzung von Wasser erfordert Temperaturen oberhalb von 2500 °C.[1]

Bei der Wasserelektrolyse erfolgt die Aufspaltung mit Hilfe von elektrischem Strom. Die Elektroden tauchen in Wasser ein, das durch die Zugabe von etwas Säure, bevorzugt Schwefelsäure, oder Lauge elektrisch leitfähiger gemacht wurde. Auch die Verwendung von Kochsalz als Elektrolyt ist möglich, wobei je nach verwendeten Elektroden und Stromdichte neben bzw. anstatt Sauerstoff auch Chlor entsteht.

Knallgasreaktion

Die Knallgasreaktion ist eine exotherm und detonationsartig ablaufende Reaktion von Wasserstoff mit Sauerstoff und verläuft mit einer Detonationsgeschwindigkeit von 2820m/s. Sie ist eine Form der Verbrennung (Oxidation).

Die Reaktionsgleichung lautet:

$ \mathrm{2 \ H_2 + O_2 \longrightarrow 2 \ H_2O} $

Es handelt sich um eine stark verzweigte Kettenreaktion (Kettenverzweigungsexplosion) unter Beteiligung von Wasserstoff-, Sauerstoff- und Hydroxyl-Radikalen als Kettenträger.

$ \mathrm{H_2 \ \xrightarrow {Energie} \ H{\cdot} + {\cdot}H \quad (Kettenstart)} $
$ \mathrm{H{\cdot} + O_2 \longrightarrow {\cdot}OH + {\cdot}O{\cdot}} $
$ \mathrm{{\cdot}O{\cdot} + H_2 \longrightarrow {\cdot}OH + H{\cdot}} $
$ \mathrm{{\cdot}OH + H_2 \longrightarrow H_2O + H{\cdot}} $

und weitere Reaktionen

Das Reaktionsprodukt ist Wasser.

Die pro molarem Formelumsatz freiwerdende Energie beträgt 571,6 kJ/molrH0 = −571,6 kJ/mol).[2] Damit ändert sich die Enthalpie H für ein Mol des entstehenden Wassers um −286 kJ/mol.

Als Nebenreaktion entsteht auch Wasserstoffperoxid gemäß:

$ \mathrm{H_2 + O_2 \longrightarrow H_2O_2} $

In den Mitochondrien lebender Zellen kommt es bei der Endoxidation im Komplex IV in der Atmungskette zu einer analogen, aber strikt kontrollierten exergonen Reaktion (biologische Knallgasreaktion), die der Energiegewinnung der Zelle, d. h. der Bildung von ATP-Molekülen dient:

$ \mathrm{O_2 + 4 \ e^- + 4 \ H^+ \longrightarrow 2 \ H_2O} $

Die freie Enthalpie ΔG°' der Reaktion ergibt sich aus ihrem Redoxpotential (+0,5 V) und beträgt bei physiologischen Bedingungen (pH 7) −193 kJ/mol.

Die gleiche Reaktion findet auch in der Brennstoffzelle statt. Bei deren Konstruktion wird die bei der Knallgasreaktion freiwerdende Energie (Enthalpiedifferenz), hier genauer: freie Enthalpie oder Gibbs-Energie ΔG genutzt, ohne eine Explosion herbeizuführen. Die dabei freiwerdende Enthalpie wird zum Teil als elektrischer Strom und zum Teil als Wärme freigesetzt. Die Reaktion läuft in der Brennstoffzelle jedoch langsam und kontrolliert ab.

Knallgasprobe

Mit dem Begriff Knallgasprobe bezeichnet man in der Chemie einen Nachweis von Wasserstoff. Dieser ist jedoch unspezifisch, da auch z. B. Methan mit Sauerstoff Knallgas bildet, und dient nur im Chemieunterricht als Pseudonachweis. Die eigentliche Verwendung (siehe unten) ist das Überprüfen des Luftgehaltes einer Wasserstoff produzierenden Apparatur.

Für den Nachweis wird üblicherweise das zu überprüfende Gas in einem Reagenzglas mit der Öffnung nach unten (damit Wasserstoff wegen der geringeren Dichte als Luft nicht entweichen kann) an eine Zündquelle (Bunsenbrenner, Feuerzeug) gehalten.

Fall 1: Das aufgefangene Gas ist reiner Wasserstoff. Es kommt zu einer ruhigen Verbrennung oder eventuell schwachen Verpuffung (negative Knallgasprobe).

Fall 2: Das aufgefangene Gas ist ein Gemisch aus Wasserstoff und Sauerstoff (Knallgas). Die Verbrennung erfolgt mit einem pfeifenden Geräusch (positive Knallgasprobe).

Aufgrund der unterschiedlichen Geräusche bei reinem Wasserstoff und dem Gemisch Wasserstoff mit Sauerstoff wird die Knallgasprobe auch zur Überprüfung der Reinheit von Wasserstoffgas verwendet, um eine Explosion in einem geschlossenen Gefäß zu vermeiden.

Ähnlich wie Knallgas explodiert das Chlorknallgas.

Anwendung

Datei:Döbereiner2Bm.jpg
Das Döbereiner-Feuerzeug auf einer DDR-Briefmarke

Dass die Knallgasreaktion auch durch einen Platindraht als Katalysator in Gang gesetzt werden kann, entdeckte Johann Wolfgang Döbereiner. Einige Jahre später gelang ihm die Entzündung eines Knallgasgemisches unter dem Einfluss von Platinschwamm. Diese Entdeckung führte zur Erfindung des ersten Feuerzeuges (des Döbereinerschen Platinfeuerzeugs).

Literatur

  • G. Jander, H. Spandau: Kurzes Lehrbuch der anorganischen und allgemeinen Chemie. Springer-Verlag, Berlin/ Heidelberg 1987, ISBN 3-540-10989-7.

Einzelnachweise

  1. Grundzüge der Anorganischen Chemie I: Hauptgruppenelemente (SS 2003); www.weidenbruch.chemie.uni-oldenburg.de/wac1S.pdf.
  2. http://www.rzuser.uni-heidelberg.de/~ltemgoua/chemie/Knallgas.html.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.03.2021
Sonnensysteme - Teilchenphysik
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
01.03.2021
Akustik - Optik - Quantenoptik
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
01.03.2021
Quantenoptik
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Satelliten - Raumfahrt
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.