Bromthiophene

Erweiterte Suche

Monobromthiophene
Name 2-Bromthiophen 3-Bromthiophen
Andere Namen α-Bromthiophen
2-Thienylbromid
β-Bromthiophen
3-Thienylbromid
Strukturformel 2-Bromothiophene.svg 3-Bromothiophene.svg
CAS-Nummer 1003-09-4 872-31-1
PubChem 13851 13383
Summenformel C4H3BrS
Molare Masse 163,04 g·mol−1
Aggregatzustand flüssig
Beschreibung farblose, klare,
stinkende Flüssigkeit[1]
hellbraune, klare,
stinkende Flüssigkeit[2]
Schmelzpunkt −10 °C[3] <−10 °C[4]
Siedepunkt 149–151 °C[1] 150 °C[2]
Flammpunkt 52 °C[1] 52 °C[2]
Dichte 1,684 g/cm3 (25 °C)[1] 1,74 g/cm3 (25 °C)[2]
Dampfdruck
Löslichkeit nicht mischbar mit Wasser[3][5]
Brechungsindex 1,586 (20 °C)[1] 1,591 (20 °C)[2]
GHS-
Kennzeichnung
02 – Leicht-/Hochentzündlich 05 – Ätzend
06 – Giftig oder sehr giftig
Gefahr[1]
02 – Leicht-/Hochentzündlich 06 – Giftig oder sehr giftig
Gefahr[2]
H- und P-Sätze 226-300-318 226-301-310-317
319-330-335
keine EUH-Sätze keine EUH-Sätze
264-​280-​301+310
305+351+338
260-​280-​284-​302+350
305+351+338-​310
Gefahrstoff-
kennzeichnung

[1][2]
Giftig
Giftig
(T)
Giftig Umweltgefährlich
Giftig Umwelt-
gefährlich
(T) (N)
R-Sätze 10-25-41[1] 10-23/24/25-36/37-43-51/53 [2]
S-Sätze 26-36/37/39-45[1] 26-36/37-45-61 [2]
LD50 35 mg·kg−1 (oral, Ratte)[1] 66-160 mg·kg−1 (oral, Ratte)[2]

Bromthiophene ist der Sammelbegriff für zwei isomere chemische Verbindungen, die zu den Heterocyclen zählen.

Darstellung

2-Bromthiophen

Die direkte Bromierung von Thiophen mit elementarem Brom liefert neben 2-Bromthiophen auch erhebliche Mengen von 2,5-Dibromthiophen. Wird die Bromierung mit Kaliumbromat und Bromwasserstoff durchgeführt, erfolgt nur einfache Substitution.[6]

Herstellung von 2-Bromthiophen aus 2,3,5-Tribromthiophen

3-Bromthiophen

3-Bromthiophen kann aus 2,3,5-Tribromthiophen, das leicht durch direkte Bromierung von Thiophen zugänglich ist[7], durch Debromierung mit Zinkstaub in Essigsäure hergestellt werden.[8][9]

Herstellung von 3-Bromthiophen aus 2,3,5-Tribromthiophen

Reaktionen

Wenn 2-Bromthiophen in flüssigem Ammoniak mit Natriumamid behandelt wird, findet eine Isomerisierung zu 3-Bromthiophen statt.[10]

Isomerisierung von 2-Bromthiophen zu 3-Bromthiophen

Die Isomerisierung kann mit guten Ausbeuten auch mit Zeolith-Katalysatoren durchgeführt werden.[11]

Verwendung

3-Bromthiophen ist die wichtigste Ausgangssubstanz zur Synthese von 3-substituierten Thiophenen.[8][7]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 Datenblatt 2-Bromthiophen bei Sigma-Aldrich, abgerufen am 16. März 2011.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 Datenblatt 3-Bromthiophen bei Sigma-Aldrich, abgerufen am 16. März 2011.
  3. 3,0 3,1 Datenblatt 2-Bromthiophen bei ChemBlink, abgerufen am 16. März 2011.
  4. Datenblatt 3-Bromthiophen bei ChemicalBook, abgerufen am 19. September 2011.
  5. Datenblatt 3-Bromthiophen bei ChemBlink, abgerufen am 16. März 2011.
  6. Y. L. Goldfarb, A. A. Dudinov, V. P. Litvinov: „New method for preparation of 2-bromothiophene“, in: Russian Chemical Bulletin, 1982, 31 (10), S. 2104–2105; doi:10.1007/BF00950665.
  7. 7,0 7,1 A. R. Katritzky: Advances in Heterocyclic Chemistry, Verlag Academic Press, 1963, ISBN 978-0-12020601-8, S. 41 (eingeschränkte Vorschau in der Google Buchsuche).
  8. 8,0 8,1 S. Gronowitz: „New Syntheses of 3-Bromothiophene and 3,4-Dibromothiophene“, in: Acta Chemica Scandinavica, 1959, 13, S. 1045–1046; doi:10.3891/acta.chem.scand.13-1045; Volltext.
  9. S. Gronowitz, T. Raznikiewicz: 3-Bromothiophene. In: Organic Syntheses. Coll. Vol. 5, p. 149 (1973); Vol. 44, p. 9 (1964); PDF.
  10. L. Brandsma, R. L. P. de Jong: „A Large-Scale Procedure for the Preparation of 3-Bromothiophene from 2-Bromothiophene and Sodamide in Liquid Ammonia“, in: Synthetic Communications, 1990, 20 (11), S. 1697–1700; doi:10.1080/00397919008053091.
  11. C. Werner, A. Kanschik-Conradsen, B. Kellermeier, H.-J. Schmidt: „Process for isomerization of 2-halothiophene to 3-halothiophene“, United States Patent 7208610. Volltext

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?