Bannisterit

Erweiterte Suche

Bannisterit
Bannisterite-146436.jpg
2,5 x 1,7 cm große Gruppe von schwarzen Bannisteritkristallen mit braunem Bustamit aus der North Mine, Broken Hill, Yancowinna County, New South Wales, Australien
Andere Namen
  • IMA 1967-005
Chemische Formel

(K,Ca)(Mn,Fe)10[(OH)8|(Si,Al)16O38] • nH2O [1]

Mineralklasse Silikate und Germanate
9.EG.40 (8. Auflage: VIII/H.17) nach Strunz
74.01.01.04 nach Dana
Kristallsystem monoklin
Kristallklasse; Symbol nach Hermann-Mauguin monoklin-prismatisch $ \ 2/m $ [2]
Farbe Hell- bis Dunkelbraun, Schwarz
Strichfarbe Hellbraun
Mohshärte 4
Dichte (g/cm3) gemessen: 2,83 bis 2,84 ; berechnet: 2,84
Glanz Harzglanz
Transparenz durchscheinend
Bruch
Spaltbarkeit vollkommen nach {001}
Habitus prismatische bis blättrige Kristalle und Aggregate
Kristalloptik
Brechungsindex nα = 1,544 bis 1,574 ; nβ = 1,586 bis 1,611 ; nγ = 1,589 bis 1,612 [3]
Doppelbrechung
(optischer Charakter)
δ = 0,045 [3] ; zweiachsig negativ
Optischer Achsenwinkel 2V = berechnet: 18° bis 28° [3]

Bannisterit ist ein selten vorkommendes Mineral aus der Mineralklasse der „Silikate und Germanate“. Es kristallisiert im monoklinen Kristallsystem mit der chemischen Zusammensetzung (K,Ca)(Mn,Fe)10[(OH)8|(Si,Al)16O38] • nH2O [1] und entwickelt meist prismatische bis blättrige Kristalle und Mineral-Aggregate bis etwa 20 cm Größe von hell- bis dunkelbrauner und schwarzer Farbe bei hellbrauner Strichfarbe.

Etymologie und Geschichte

Erstmals entdeckt wurde Bannisterit 1936 in der „Benallt Mine“ bei Rhiw (Llanfaelrhys) auf der Lleyn-Halbinsel im Vereinigten Königreich (Großbritannien) und beschrieben durch Foshag, der das Mineral allerdings fälschlich als Ganophyllit identifizierte. Als W. C. Smith 1948 die optischen Eigenschaften des als Ganophyllit aus der „Benallt Mine“ bezeichneten Material mit dem aus der Typlokalität „Harstig Mine“ bei Pajsberg in Schweden desselben Minerals verglich, konnte er aufgrund der strukturellen Unterschiede nachweisen, dass hier zwei Minerale mit dem gleichen Namen belegt worden waren.[4]

M. L. Smith und C. Frondel konnten schließlich 1968 mithilfe von Röntgenbeugungsdiagrammen an Einkristallen die Ergebnisse von W. C. Smith bestätigen und benannten das Material aus der „Benallt Mine“ Bannisterit zu Ehren des Kurators der Mineralabteilung des British Museum in London.[4]

Da zur Analyse des Minerals durch M. L. Smith und C. Frondel auch Material aus der „Franklin-Mine“ in New Jersey (USA) verwendet wurde, gilt neben der „Benallt Mine“ auch Franklin als Typlokalität.[4]

Klassifikation

In der mittlerweile veralteten, aber noch gebräuchlichen 8. Auflage der Mineralsystematik nach Strunz gehörte der Bannisterit zur Mineralklasse der „Silikate und Germanate“ und dort zur Abteilung der „Schichtsilikate (Phyllosilikate)“, wo er zusammen mit Bariumbannisterit, Eggletonit, Ekmanit, Franklinphilit, Ganophyllit, Lennilenapeit, Middendorfit, Parsettensit, Stilpnomelan und Tamait eine eigenständige Gruppe bildete.

Die seit 2001 gültige und von der International Mineralogical Association (IMA) verwendete 9. Auflage der Strunz'schen Mineralsystematik ordnet den Bannisterit ebenfalls in die Klasse der „Silikate und Germanate“ und dort in die Abteilung der „Schichtsilikate (Phyllosilikate)“ ein. Diese Abteilung ist allerdings weiter unterteilt nach der Art der Schichtenbildung, so dass das Mineral entsprechend seines Aufbaus in der Unterabteilung „Doppelnetze mit Sechsfach-Ringen“ zu finden ist, wo es zusammen mit Franklinphilit, Lennilenapeit, Parsettensit und Stilpnomelan die unbenannte Gruppe 9.EG.40 bildet.

Auch die Systematik der Minerale nach Dana ordnet den Bannisterit in die Klasse der „Silikate und Germanate“ und dort in die Abteilung der „Schichtsilikate: modulierte Lagen“ ein. Hier ist er zusammen mit Stilpnomelan, Lennilenapeit, Franklinphilit und Middendorfit in der „Stilpnomelangruppe“ mit der System-Nr. 74.01.01 innerhalb der Unterabteilung „Schichtsilikate: modulierte Lagen mit verbundenen Inseln“ zu finden.


Bildung und Fundorte

Bannisterit und Rhodonit aus Broken Hill, Yancowinna County, New South Wales, Australien

Bannisterit bildet sich metamorph in mangan- und zinkhaltigen Erzkörpern. Begleitminerale sind unter anderem mangan- und zinkhaltige Amphibole, Apophyllit, Baryt, Calcit, Fluorit, Galenit, Quarz, Rhodonit und Sphalerit.

Weltweit konnte Bannisterit bisher (Stand: 2011) an knapp 20 Fundorten nachgewiesen werden, so unter anderem bei Broken Hill in Australien; mehrere Gegenden auf Honshū und Shikoku in Japan; Botnedal in der norwegischen Kommune Tokke; bei Jekaterinburg in Russland; im Slowakischen Erzgebirge; in der schwedischen Gemeinde Lindesberg (Västmanland) und bei Sparta im Alleghany County des US-amerikanischen Bundesstaates North Carolina.[3]

Kristallstruktur

Bannisterit kristallisiert monoklin in der Raumgruppe $ \ A2/a $ (Raumgruppen-Nr. 15) mit den Gitterparametern a = 22,32 Å; b = 16,4 Å; c = 24,69 Å und β = 94,3° sowie 8 Formeleinheiten pro Elementarzelle.[1]

Siehe auch

Einzelnachweise

  1. 1,0 1,1 1,2  Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. 9. Auflage. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 688.
  2. Webmineral - Bannisterite (englisch)
  3. 3,0 3,1 3,2 3,3 Mindat - Bannisterite (englisch)
  4. 4,0 4,1 4,2 Peter J. Heaney, Jeffrey E. Post, Howard T. Evans, Jr.: The Crystal Structure of Bannisterite. In: Clays and Clay Minerals, Vol 40. No. 2. 129-144. 1992 (englisch, PDF 1,8 MB)

Weblinks

 Commons: Bannisterite – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Die cosmos-indirekt.de:News der letzten Tage

25.09.2023
Thermodynamik | Optik | Akustik
Licht- und Schallwellen enthüllen negativen Druck
Negativer Druck ist ein seltenes und schwer nachzuweisendes Phänomen in der Physik.
20.09.2023
Sterne | Teleskope | Astrophysik
JWST knipst Überschall-Gasjet eines jungen Sterns
Die sogenannten Herbig-Haro-Objekte (HH) sind leuchtende Gasströme, die das Wachstum von Sternbabies signalisieren.
18.09.2023
Optik | Quantenphysik
Ein linearer Weg zu effizienten Quantentechnologien
Forschende haben gezeigt, dass eine Schlüsselkomponente für viele Verfahren der Quanteninformatik und der Quantenkommunikation mit einer Effizienz ausgeführt werden kann, die jenseits der üblicherweise angenommenen oberen theoretischen Grenze liegt.
17.01.1900
Thermodynamik
Effizientes Training für künstliche Intelligenz
Neuartige physik-basierte selbstlernende Maschinen könnten heutige künstliche neuronale Netze ersetzen und damit Energie sparen.
16.01.1900
Quantencomputer
Daten quantensicher verschlüsseln
Aufgrund ihrer speziellen Funktionsweise wird es für Quantencomputer möglich sein, die derzeit verwendeten Verschlüsselungsmethoden zu knacken, doch ein Wettbewerb der US-Bundesbehörde NIST soll das ändern.
15.01.1900
Teilchenphysik
Schwer fassbaren Neutrinos auf der Spur
Wichtiger Meilenstein im Experiment „Project 8“ zur Messung der Neutrinomasse erreicht.
17.09.2023
Schwarze Löcher
Neues zu supermassereichen binären Schwarzen Löchern in aktiven galaktischen Kernen
Ein internationales Team unter der Leitung von Silke Britzen vom MPI für Radioastronomie in Bonn hat Blazare untersucht, dabei handelt es sich um akkretierende supermassereiche schwarze Löcher in den Zentren von Galaxien.
14.09.2023
Sterne | Teleskope | Astrophysik
ESO-Teleskope helfen bei der Lösung eines Pulsar-Rätsels
Durch eine bemerkenswerte Beobachtungsreihe, an der zwölf Teleskope sowohl am Erdboden als auch im Weltraum beteiligt waren, darunter drei Standorte der Europäischen Südsternwarte (ESO), haben Astronom*innen das seltsame Verhalten eines Pulsars entschlüsselt, eines sich extrem schnell drehenden toten Sterns.
30.08.2023
Quantenphysik
Verschränkung macht Quantensensoren empfindlicher
Quantenphysik hat die Entwicklung von Sensoren ermöglicht, die die Präzision herkömmlicher Instrumente weit übertreffen.
30.08.2023
Atomphysik | Teilchenphysik
Ein einzelnes Ion als Thermometer
Messungen mit neuem Verfahren zur Bestimmung der Frequenzverschiebung durch thermische Strahlung an der PTB unterstützen eine mögliche Neudefinition der Sekunde durch optische Uhren.