Aminoacyl-tRNA-Synthetase

Erweiterte Suche

Aminoacyl-tRNA-Synthetasen (AARS) sind Enzyme, die in allen Lebewesen im Zytoplasma vorkommen und wichtig für die Translation (ein Teil der Proteinbiosynthese) sind. Ihre Funktion ist es, die tRNAs abhängig von ihrer Sequenz (insbesondere ihrer Anticodon-Sequenz) mit ihren spezifischen Aminosäuren zu beladen. Es gibt meistens 20 verschiedene Aminoacyl-tRNA-Synthetase-Moleküle, eines pro Aminosäure. Eukaryoten haben einen zusätzlichen Satz mitochondrieller AARS, und Pflanzen einen weiteren in Plastiden. Diese sind zu den Hauptenzymen und untereinander unterschiedlich und beladen vorzugsweise die tRNA der jeweiligen Organellen.[1] Jedoch können Archaeen, Cyanobakterien, aber auch Mitochondrien und Plastiden einige tRNA nicht mithilfe der AARS herstellen. Diese Organismen haben noch einen zweiten Weg zur Biosynthese der Aminoacyl-tRNA.[2][3]

Beim Menschen führen Mutationen im GARS-Gen (Glycyl-tRNA-Synthetase) zu einer Form des Morbus Charcot-Marie-Tooth. [4]

Die katalysierte Reaktion:

$ \mathrm{tRNA+\mbox{Aminosäure}\;\!+ATP\;\longrightarrow \;tRNA \;\!\!\mbox{-}\;\!\!\mbox{Aminosäure}\;\!+AMP+\mbox{Pyrophosphat}} $

Struktur

Die Aufteilung der AARS erfolgt in zwei Klassen: Klasse 1-AARS haben eine Rossmann-Faltung, während Klasse 2-AARS ein beta-Faltblatt aufweisen.[5][6]

Ablauf der tRNA-Beladung

Damit eine tRNA mit der entsprechenden Aminosäure (AS) beladen werden kann, muss die Aminoacyl-tRNA Synthetase die AS zuerst aktivieren. Dies geschieht durch Bildung einer Carbonsäure-Phosphorsäure-Anhydrid-Bindung zwischen der Aminosäure und ATP, wobei AS-AMP (Aminoacyladenylat) und Pyrophosphat (PPi oder Diphosphat) entstehen.

Nun kann die mit AMP verbundene AS auf das 3'-Ende der tRNA übertragen werden, wobei das AMP-Molekül wieder abgespalten wird.

Die Spezifität und Kontrolle dieser Aminoacylierung der tRNAs ist genauso wichtig für die Genauigkeit der Proteinbiosynthese wie die Anticodon-Codon-Wechselwirkung zwischen tRNA und mRNA am Ribosom. Wird die tRNA mit der falschen Aminosäure beladen, so wird bei der Proteinbiosynthese die falsche Aminosäure eingebaut, auch wenn die tRNA-mRNA-Wechselwirkung korrekt ist.

Einige Aminoacyl-tRNA Synthetasen erkennen die passenden tRNAs hauptsächlich anhand des Anticodons. Es konnte allerdings durch Mutageneseexperimente für die Alanyl-tRNA Synthetase gezeigt werden, dass diese die entsprechende tRNA nicht am Anticodon, sondern anhand des Akzeptorstamms und einer Haarnadelschleife erkennt. Auch gibt es nicht für jede der möglichen 64 Codon-Kombinationen eine spezifische Aminoacyl-tRNA-Synthetase, sondern nur eine für jede proteinogene Aminosäure (siehe degenerierter genetischer Code).

Schließlich besitzt die Aminoacyl-tRNA-Synthetase auch die Fähigkeit zum Korrekturlesen und kann die Bindung zwischen einer "falsch beladenen" Aminosäure und der tRNA überdies wieder auflösen.

Literatur

  • Woese CR, Olsen GJ, Ibba M, Söll D: Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. In: Microbiol. Mol. Biol. Rev.. 64, Nr. 1, März 2000, S. 202–36. PMID 10704480. Volltext bei PMC: 98992.
  • Curnow AW, Hong K, Yuan R, et al.: Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. In: Proc. Natl. Acad. Sci. U.S.A.. 94, Nr. 22, Oktober 1997, S. 11819–26. PMID 9342321. Volltext bei PMC: 23611.

Einzelnachweise

  1. UniProt Suchergebnis menschliche Aminoacyl-tRNA-Synthetasen
  2. RajBhandary UL: Once there were twenty. In: Proc. Natl. Acad. Sci. U.S.A.. 94, Nr. 22, Oktober 1997, S. 11761–3. PMID 9342308. Volltext bei PMC: 33776.
  3. EC 6.1.1.-
  4. UniProt P41250
  5. Burbaum JJ, Schimmel P: Structural relationships and the classification of aminoacyl-tRNA synthetases. In: J. Biol. Chem.. 266, Nr. 26, September 1991, S. 16965–8. PMID 1894595.
  6. InterPro: IPR006195 Aminoacyl-tRNA synthetase, class II, conserved domain

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

23.07.2021
Quantenphysik - Biophysik
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
22.07.2021
Galaxien
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
21.07.2021
Sonnensysteme - Sterne
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
20.07.2021
Festkörperphysik - Thermodynamik
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
19.07.2021
Galaxien - Schwarze_Löcher
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
14.07.2021
Exoplaneten
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
13.07.2021
Supernovae
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
08.07.2021
Festkörperphysik - Quantenphysik
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
01.07.2021
Festkörperphysik - Teilchenphysik
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht.
29.06.2021
Planeten
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.