Absolute Helligkeit

Erweiterte Suche

Die absolute Helligkeit ist eine Hilfsgröße in der Astronomie, um die tatsächlichen Helligkeiten, also die Leuchtkräfte, von Himmelsobjekten vergleichen zu können.

Von der Erde aus sieht man einen Stern mit seiner scheinbaren Helligkeit, da sie durch seine Entfernung und interstellare Materie beeinflusst wird.

Für die Bestimmung der absoluten Helligkeit verwendet man eine einheitliche Entfernung. Diese beträgt zehn Parsec (32,6 Lichtjahre) für Sterne und eine Astronomische Einheit (AU) für (reflektierende) Objekte des Sonnensystems. Die relative Helligkeit, die ein Beobachter aus dieser Normdistanz messen würde, nennt man absolute Helligkeit. Bei Sternen, die weniger als zehn Parsec entfernt sind, ist die scheinbare Helligkeit größer als die absolute Helligkeit und umgekehrt. Wie auch bei der scheinbaren Helligkeit bedeutet ein kleinerer Zahlenwert größere Leuchtkraft.

Absolute Helligkeiten werden wie scheinbare Helligkeiten in Magnituden (mag) angegeben. Insbesondere in älteren Werken zur Astronomie findet man häufig die Schreibweise mit einem hochgestellten M über dem Dezimalkomma, beispielsweise $ 3\stackrel{\text{M}}{,}0 $ bei einem Stern der dritten (absoluten) Größenklasse. Die Verwendung des Großbuchstabens verdeutlicht dabei, dass es sich um eine absolute Helligkeit handelt.

Die hellsten Fixsterne erreichen absolute Helligkeiten von etwa −9 mag (über 100.000-fache Leuchtkraft der Sonne), die lichtschwächsten dagegen +17 mag (etwa ein zehntausendstel der Sonnenleuchtkraft).

Bolometrische Helligkeit

Hauptartikel: Bolometrische Helligkeit

Diese gibt die Helligkeit eines Sterns im gesamten elektromagnetischen Spektrum an. Die hierfür erforderliche Korrektur hängt vom Empfindlichkeitsbereich des Messgerätes sowie vom Spektraltyp des betreffenden Objektes ab. Die fotografische Helligkeit der Sonne beträgt $ 5^M,16 $, die bolometrische Helligkeit dagegen $ 4^M,74 $.

Entfernungsmodul

Die Differenz zwischen scheinbarer Helligkeit m und absoluter Helligkeit M wird Entfernungsmodul genannt, denn sie steht in festem Zusammenhang zur Entfernung. Aus der Festlegung der Helligkeitsstufen folgt:

$ \frac{r}{10\,\mathrm{pc}} = 10^{0,2 \cdot (m - M)\,\mathrm{mag}^{-1}} $ ,

beziehungsweise

$ m - M = 5\,\mathrm{mag} \cdot\log_{10} \left( \frac{r}{10\,\mathrm{pc}}\right) $ .

Gibt man die Entfernungsmaßzahl $ r^*= r / \mathrm{pc} $ als dimensionslose Zahl an, so wird daraus

$ m - M = 5\,\mathrm{mag} \cdot( \lg r^* - \lg 10 ) = -5\,\mathrm{mag} + 5\,\mathrm{mag} \cdot\lg r^*\, $ .

Aus der Definition der Parallaxensekunde folgt als Beziehung zwischen Entfernungsmaßzahl $ r^* $ und jährlicher Parallaxe π (als dimensionslose Zahl in Bogensekunden)

$ r^* = \frac{1}{\pi}\, \, $ .

Damit ergibt sich dann

$ m - M = -5\,\mathrm{mag} -5\,\mathrm{mag} \cdot \lg \pi\, $ .

Mit Hilfe dieser für die Astronomie wichtigen Formel kann für Sterne, deren Leuchtkraft bekannt ist (z. B. Cepheiden oder Supernovae vom Typ Ia), der Abstand berechnet werden. Auf diese Weise konnte 1923 die Entfernung des Andromedanebels ermittelt werden.

m − M Entfernung m − M Entfernung
Parsec Lichtjahre Parsec Lichtjahre
5 1 3,26 + 5,5 125,89 410,61
− 4 1,58 5,17 + 6,0 158,49 516,93
− 3 2,51 8,19 + 6,5 199,53 650,78
− 2 3,98 12,98 + 7,0 251,19 819,28
− 1 6,31 20,58 + 7,5 316,23 1.031,41
0 10 32,62 + 8,0 398,11 1.298,47
+ 1 15,85 51,69 + 8,5 501,19 1.634,68
+ 2 25,12 81,93 + 9,0 630,96 2.057,94
+ 3 39,81 129,85 + 9,5 794,33 2.590,80
+ 4 63,10 205,79 + 10 1.000 3.261,62
+ 5 100 326,16 + 25 1.000.000 3.261.619

Vergleich Scheinbare / Absolute Helligkeit einiger Sterne

Stern Scheinbare H. ($ m_V $) Absolute H. ($ M_V $) Entfernungsmodul
($ m_V - M_V $)
Entfernung
Sonne $ -26^m,73 $ $ +4^M,84 $ − 31,57 4,851·10-6 pc
Sirius $ -1^m,46 $ $ +1^M,43 $ − 2,89 2,64 pc
Wega $ +0^m,03 $ $ +0^M,58 $ − 0,55 7,75 pc
Pollux $ +1^m,15 $ $ +1^M,08 $ + 0,07 10,34 pc
Spica $ +1^m,04 $ $ -3^M,51 $ + 4,55 81,3 pc
Rigel $ +0^m,12 $ $ -6^M,78 $ + 6,90 240 pc

Objekte im Sonnensystem

Bei Kometen und Asteroiden wird der Begriff Absolute Helligkeit abweichend definiert, da sie nur Licht reflektieren. Hier wird die Situation angenommen, dass das Objekt (der Komet oder Asteroid) genau eine astronomische Einheit entfernt von der Sonne steht und von der Sonne aus beobachtet wird. Die Helligkeit, mit der das Objekt dann zu sehen wäre, wird als absolute Helligkeit bezeichnet.

Siehe auch

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?