Tolansky-Verfahren

Das Tolansky-Verfahren, benannt nach dem Physiker Samuel Tolansky, ist ein Verfahren zur Schichtdickenmessung. Es beruht auf dem Prinzip der Interferenz. Bei der Betrachtung eines Interferenzmusters unter monochromatischem Licht wird dabei der Abstand der Interferenzstreifen und der Versatz der Inteferenzstreifen an einer Kante der Schicht gemessen um die Schichtdicke zu ermitteln.

Prinzip

Skizze zur Entstehung der Interferenzstreifen und deren Versatz an einer Kante

Eine Glasplatte wird leicht gekippt auf eine Schicht gelegt. Dabei schließen die Normalen der Platte und der Schicht einen kleinen Winkel $ {\alpha} < {1^\circ} $ ein. Betrachtet man die Anordnung unter monochromatischem Licht, z.B. einer Natriumdampflampe, so ist ein charakteristisches Bild von äquidistanten Interferenzstreifen mit Abstand $ a $ zu erkennen. Die Lichtstrahlen löschen sich gerade dann aus, wenn der Abstand zwischen Glasplatte und Schicht ein Vielfaches der halben Wellenlänge ist. An einer Kante der Schicht kommt es nun zu einem Versatz diese Musters um die Länge $ l $. Die Ursache dafür ist, dass Lichtstrahlen nun zusätzlich die Strecke $ d $, Dicke der oberen Schicht, zurücklegen müssen. Diese ist jedoch kein Vielfaches der halben Wellenlänge. Der Lichtstrahl interferiert erst dann wieder, wenn gerade die Strecke $ d $ durch einen Versatz kompensiert wurde. Wie in der Skizze zu erkennen, ergeben sich daraus die wichtigen Zusammenhänge um auf die Schichtdicke zurückzuschließen.

$ \tan\alpha=\frac{\lambda/2}{a}\quad\text{und}\quad \tan\alpha=\frac{d}{l} $

Durch Gleichsetzen erhält man die Formel für die Schichtdicke.

$ d=\frac{l\cdot\lambda}{2a} $

Dicke Schichten

Bei monochromatischer Beleuchtung lassen sich so Schichtdicken bis zur halben Wellenlänge $ \lambda/2 $ eindeutig bestimmen. Bei dickeren Schichten ist es jedoch nötig zu identifizieren, welche die korrespondierende Interferenzlinie jenseits des Sprunges ist, um die Länge $ l $ korrekt ermitteln zu können. Dazu benötigt man eine Beleuchtung mit mehreren Spektrallinien, z.B: aus einer Quecksilberdampflampe. Das dann entstehende komplexere Interferenzmuster setzt sich jenseits der Sprungkante fort und ermöglicht es, die korrespondierende Interferenzlinie zu bestimmen. Bei einer gleitenden Änderung der Schichtdicke ist es mitunter auch bei monochromatischer Beleuchtung möglich, die korrespondierende Interferenzlinie anhand ihres Verlaufes zu indentifizieren. Bei bekannter Orientierung des Richtung des Luftkeils zwischen Auflageplättchen und Probe ist darüber hinaus zu erkennen, ob es sich um eine steigende oder um eine fallende Stufe im Material handelt.

Optimierungen

Eine deutliche Verbesserung des Interferenzkontrastes wird erzielt, wenn die aufliegende Glasplatte mit einer halbdurchlässigen Spiegelschicht versehen wird. Beispielsweise mit einer 10 nm dicken Aluminium- oder Chromschicht. Weiterhin ist es hilfreich, wenn diese Glasplatte sehr dünn ist: Dicke etwa 0,2 mm. Dadurch ist sie etwas biegsam und man kann durch Aufpressen den Luftkeil schmaler machen, so dass niedrige Interferenzordnungen auftreten und eine kurze Kohärenzlänge der Lichtquelle ausreichend ist - wie bei Beleuchtung mit einer Hochdruck-Gasentladungslampe (Xenon-, Quecksilber-, oder Natriumdampflampe). Die Betrachtung kann mit einem einfachen Auflichtmikroskop erfolgen. Die Vermessung der Interferenzlinien wird in der Regel mit einem Messokular realisiert. Sie ist natürlich auch anhand von Bilddaten möglich.

Die erzielbare Messgenauigkeit hängt von der Qualität der Beleuchtung, der Abbildung und der Schärfe der Interferenzlinien ab. Sie liegt typischerweise im Bereich von 5-10 nm. Mit stärkerer Verspiegelung des Glasplättchens ($ {R} > {90%} $) werden die Interferenzlinien schmaler und die erzielbare Auflösung wird höher, bis hinunter zu 1 nm. Dazu siehe H. K. Pulker unter Literatur. Zu beachten ist, dass ein hochauflösendes Objektiv mit einer hohen numerischen Apertur den Kontrast verschlechtern kann, da das Licht aus einem breiteren Winkelbereich auf den Interferenzkeil trifft und das Interferenzmuster verschmiert.

Weblinks

Literatur

  • Alfred Recknagel: Physik, Band Optik. 3. Auflage, Verlag Technik Berlin, Berlin 1963, Abschnitt 5.10. Interferometer, Seiten 169f
  • H.K. Pulker: Einfaches Interferenz-Wechselobjektiv für Mikroskope zur Dickenmessung nach Fizeau-Tolansky. Naturwissenschaften Volume 53, Issue 9 , page 224, 1966, DOI 10.1007/BF00633891

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

06.05.2021
Astrophysik - Relativitätstheorie
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Physikdidaktik - Quantenphysik
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat.
06.05.2021
Festkörperphysik - Quantenphysik
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
28.04.2021
Galaxien - Sterne
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
07.04.2021
Teilchenphysik
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
19.04.2021
Exoplaneten
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.