Sphingolipide

Allgemeine Struktur von Sphingolipiden
Verschiedene Reste (R) ergeben unterschiedliche Untergruppen.
Wasserstoff - Ceramide
Phosphocholin - Sphingomyelin
Saccharid - Glycosphingolipide

Sphingolipide sind wichtige Bestandteile der Zellmembran und gehören zur Verbindungsklasse der Lipide. Im Gegensatz zu den auf Glycerin aufbauenden Phosphoglyceriden leiten sich die Sphingolipide von dem ungesättigten Aminoalkohol Sphingosin ab.

Über seine Amin-Gruppe ist das Sphingosin amidisch mit einer Acylgruppe wie zum Beispiel einer Fettsäure verbunden. Das Sphingosin-Rückgrat ist über einen Phosphatrest durch Esterbindungen mit einer (üblicherweise) geladenen Gruppe wie Serin, Ethanolamin oder Cholin verbunden. Handelt es sich bei der Kopfgruppe um einen oder mehrere Zucker, erfolgt die Bindung ohne einen Phosphatrest direkt am Sphingosin-Rückgrat mittels einer glykosidischen Bindung.

Sphingolipide findet man häufig in Nervengewebe, wo sie eine wichtige Rolle in der Signaltransduktion und der Interaktion einzelner Zellen spielen.

Erkrankungen im Zusammenhang mit Sphingolipide, sogenannte Sphingolipidose

Klassen der Sphingolipide

Es gibt drei Haupttypen von Sphingolipiden: Ceramide und die daraus abgeleiteten Sphingomyeline und Glycosphingolipide. Letztere werden weiter unterschieden in Cerebroside und Ganglioside. Diese Typen unterscheiden sich in der Art ihres Restes (siehe Bild).
Ceramide sind die einfachste Gruppe der Sphingolipide. Bei ihnen wird der Rest nur durch ein Wasserstoffatom gebildet, sie sind also nur ein Sphingosinmolekül, das durch eine Amidbindung an eine Fettsäure gebunden ist.
Sphingomyeline haben ein Phosphocholin- oder Phosphoethanolaminmolekül das als Ester an die 1-Hydroxygruppe eines Ceramides gebunden ist.
Glycosphingolipide sind Ceramide mit einem oder mehreren Zuckerresten die durch eine β-Glykosidbindung an die 1-Hydroxygruppe gebunden sind. Cerebroside haben ein einzelnes Glukose- oder Galaktose-Molekül als Rest, während Ganglioside mindestens drei Zucker enthalten, von denen mindestens einer Sialinsäure ist.

Sphingolipide werden im Endoplasmatischen Retikulum und im Golgi-Apparat synthetisiert, werden aber in der Plasmamembran und in Endosomen, wo sie zahlreiche Aufgaben erfüllen, weiter bearbeitet. Ihr Transport erfolgt über Vesikel. In den Mitochondrien und dem endoplasmatischen Retikulum sind Sphingolipide quasi nicht nachweisbar, in der Plasmamembran beträgt ihre Konzentration jedoch 20-35 mol%.[1]

Biologische Funktion

Zu den wesentlichen Lipiden in der eukaryotischen Zellmembran zählen Glycerophospholipide, Cholesterol und Sphingolipide (Phospho-und Glycosphingolipide). Ihre Funktionen lassen sich zum einen über den Aufbau und der Regulation der Fluidität zellulärer Membranen beschreiben[2] und zum anderen bei der Erklärung von interzellulären Erkennungsprozessen (siehe Vielzeller). In der klinisch-medizinischen Anwendung dient deren Analyse zur Charakterisierung als entwicklungsspezifische Marker, aber auch als Tumor- sowie als Blutgruppenantigene.

Mitte der 1980er-Jahre entdeckte man die Hemmung der Proteinkinase C (PKC) durch Sphingosin. Dies führte zu der Überlegung, dass Sphingolipide auch als intrazelluläre Botenstoffe fungieren können, als sogenannte second messenger. In Mittelpunkt des aktuellen Forschungsinteresse stehen die Sphingolipide Ceramid bzw. Ceramid-1-phosphat und Sphingosin bzw. Sphingosin-1-phosphat.

Siehe auch

Einzelnachweise

  1. van Meer G, Lisman Q: Sphingolipid transport: rafts and translocators. In: J. Biol. Chem.. 277, Nr. 29, Juli 2002, S. 25855–8. doi:10.1074/jbc.R200010200. PMID 12011105.
  2. J. P. Slotte: Sphingomyelin-cholesterol interactions in biological and model membranes. In: Chem Phys Lipids Band 102, Nummer 1–2, 1999, S. 13–27.

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

25.01.2021
Exoplaneten
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Elektrodynamik - Teilchenphysik
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Elektrodynamik - Quantenoptik
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optik - Quantenoptik
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
22.01.2021
Festkörperphysik - Quantenoptik - Thermodynamik
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
21.01.2021
Sonnensysteme - Planeten
Die Entstehung des Sonnensystems in zwei Schritten
W
21.01.2021
Exoplaneten
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Kometen_und_Asteroiden
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Quantenphysik - Teilchenphysik
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Sterne - Astrophysik - Klassische Mechanik
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.