Rachinger-Korrektur

Die Rachinger-Korrektur ist ein von William Albert Rachinger (*1927) vorgeschlagenes und heute nicht mehr verwendetes rekursives Verfahren, um den störenden Kα2-Peak aus einem Beugungsbild bei der Röntgenbeugung herauszurechnen.

Ursache des Doppelpeaks

Für Beugungsexperimente mit Röntgenstrahlung verwendet man in der Regel Strahlung mit der $ K_\alpha $-Wellenlänge des Anodenmaterials. Dabei handelt es sich jedoch um ein Dublett, also in Wirklichkeit um zwei geringfügig unterschiedliche Wellenlängen. Nach den Beugungsbedingungen der Laue- bzw. Bragg-Gleichung erzeugen beide Wellenlängen jeweils ein Intensitätsmaximum. Diese Maxima liegen sehr dicht beieinander, wobei ihr Abstand abhängig vom Beugungswinkel $ 2\theta $ ist. Für größere Winkel ist der Abstand der Intentsitätsmaxima größer.

Vorgehen

Grundlagen

Die Wellenlängen der Kα1- und Kα2-Strahlung sind bekannt, damit auch ihre Energien über die Beziehung

$ E = h \frac{c_0}{\lambda}. $

Daraus lässt sich für jeden Beugungswinkel der Winkelabstand $ \Delta\theta $ der beiden Kα-Peaks bestimmen.

Weiterhin ist bekannt, wie sich die Intensitäten von Kα1 und Kα2 im Beugungsbild verhalten. Dieses Verhältnis ist quantenmechanisch festgelegt und beträgt für alle Anodenmaterialien:

$ r = \frac{I_{\alpha_2}}{I_{\alpha_1}} = 0{,}5. $

Rechnung

Für die Rechnung geht man nun davon aus, dass sich beim K$ \alpha_2 $-Peak lediglich um eine mit dem Faktor $ r $ skalierte und um $ \Delta\theta $ zu größeren Winkeln verschobene Variante des K$ \alpha_1 $-Peaks handelt.

Für die Gesamt-Intensität gilt also

$ I(\theta) = I_1(\theta) + I_2(\theta) $,

wobei $ I_1(\theta) $ die Intensität des reinen K$ \alpha_1 $-Peaks und $ I_2(\theta) $ die Intensität des reinen K$ \alpha_2 $-Peaks ist. Mit dem oben genannten gilt jedoch für die Intensität des K$ \alpha_2 $-Peaks

$ I_2(\theta) = r\cdot I_1(\theta-\Delta\theta) $,

so dass sich für die Gesamt-Intensität

$ I(\theta) = I_1(\theta) + r\cdot I_1(\theta-\Delta\theta) $

ergibt.

Praktische Umsetzung

Beugungsbild vor und nach Rachinger-Korrektur

Um die Rachinger-Korrektur praktisch durchzuführen, beginnt man an einer steigenden Flanke eines Peaks. Für einen bestimmten Winkel $ \theta $ wird die Intensität des Beugungsbildes $ I(\theta) $ genommen und mit $ r $ skaliert zu $ I'(\theta) = r\cdot I(\theta) $, gleichzeitig wird der Winkelunterschied $ \Delta\theta $ berechnet. An der Stelle $ \theta+\Delta\theta $ kann die wahre Intensität $ I_1 $ (die vorläge, wenn es keinen K$ \alpha_2 $-Peak gäbe) berechnet werden durch

$ I_1(\theta+\Delta\theta) = I(\theta+\Delta\theta) - I'(\theta) $.

Da die Messwerte von Röntgenbeugungsexperimenten in der Regel als ASCII-Tabellen vorliegen, kann dieses Vorgehen schrittweise wiederholt werden, bis das gesamte Beugungsbild durchgefahren wurde.

Heute wird diese Methode nicht mehr verwendet. Aufgrund der Leistungsfähigkeit der Computer wird der Kα2 - Peak einfach immer mitgefittet.

Einschränkungen

Aus der Art und Weise, wie das korrigierte Beugungsbild berechnet wird, ergibt sich, dass für die kleinen Beugungswinkel keine Korrektur erfolgt.

Literatur

  •  William Albert Rachinger: A Correction for the α1 α2 Doublet in the Measurement of Widths of X-ray Diffraction Lines. In: Journal of Scientific Instruments. 25, Nr. 7, 1948, S. 254–255.
  • B. E. Warren, X-ray Diffraction. Dover Publications, 1969/1990, ISBN 0-486-66317-5

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

24.02.2021
Kometen_und_Asteroiden
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
24.02.2021
Quantenphysik
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
19.02.2021
Quantenphysik
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
22.02.2021
Sterne - Teilchenphysik
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
19.02.2021
Milchstraße - Schwarze_Löcher
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
18.02.2021
Elektrodynamik - Teilchenphysik
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
18.02.2021
Quantenphysik - Teilchenphysik
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen.
18.02.2021
Quantenoptik
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
18.02.2021
Planeten
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.