Proteinbestimmung nach Lowry

Die Proteinbestimmung nach Lowry ist eine Methode, um Proteine quantitativ zu bestimmen.[1]

Sie beruht auf zwei Reaktionen:

  • Der erste Schritt beruht auf der Biuretreaktion, nämlich auf der Bildung eines blau-violetten, quadratisch-planaren Komplexes zwischen den Peptidbindungen und den Kupfer(II)-Ionen in alkalischer Lösung.
  • In einem zweiten Schritt wird Cu(II) zu Cu(I) reduziert. Dieses Cu(I) wiederum reduziert das gelbe Folin-Ciocalteu-Reagenz (Molybdän(VI)- und Wolfram(VI)-Heteropolysäuren) zu Molybdänblau. Die resultierende intensive Blaufärbung wird zur quantitativen Bestimmung der Proteinkonzentration mittels Photometrie bei 750 nm, 650 nm oder 540 nm vermessen. [2]

Die Lowry-Methode ist wesentlich empfindlicher als die Biuret-Methode wegen ihrer zweiten, zusätzlichen Farbreaktion. Es können auch Proteinkonzentrationen von 0,1–1 µg Protein pro Milliliter bestimmt werden 1–10.[2] Allerdings ist sie zeitaufwändiger und störanfälliger. So wird diese von nicht-proteinogenen Substanzen sowie von EDTA, Triton X-100 oder Ammoniumsulfat gestört.[2]

In der Literatur sind einige Verbesserungen und Weiterentwicklungen beschrieben worden. So hat Hartree 1972 eine Variante der Lowry-Methode vorgestellt, die u. a. die hohe Störanfälligkeit adressiert.[3] Bezüglich der Zeitentwicklung der Blaufärbung nach Zugabe des Folin-Ciocalteu-Reagenz empfahl Lowry eine Wartezeit von 30 Minuten und dann die Extinktion bei 750 Nanometer zu messen. Eine aktuelle Untersuchung von Christopher Pomory zeigt jedoch, dass die Intensität der Blaufärbung im Zeitraum zwischen 30 und 120 Minuten noch zunimmt, zwischen 120 und 240 Minuten stabil bleibt und anschließend wieder abnimmt.[4] Darüber hinaus empfehle es sich die Lowry-Reagenzien mit Wasser statt mit Natriumhydroxid anzusetzen, dagegen die Proteinlösungen in 1 M Natriumhydroxid. Weiterhin seien zur Messung der Extinktion 660 Nanometer geeigneter als die üblichen 750 Nanometer.

Als Alternative bietet sich die einfachere Proteinbestimmung nach Bradford an, die ähnlich empfindlich ist. Der Vorteil der Lowry-Methode gegenüber der Methode nach Bradford ist, dass mit ihr auch Proteinkonzentrationen in Lösungen bestimmt werden können, die Natriumlaurylsulfat (SLS) enthalten, welches die Bestimmung nach Bradford behindern würde.[5] Alternativ kann man auch das Cu(I) mittels Bicinchoninsäure (BCA) in einen intensiv-rosa Komplex umwandeln, der photometrisch bestimmt wird.[6]

Trivia

Aufgrund der weiten Verbreitung dieses Verfahrens handelt es sich bis 2005 bei der aufgeführten Publikation von Oliver Lowry[1] um die am häufigsten zitierte überhaupt.[7]

Siehe auch

Einzelnachweise

  1. 1,0 1,1 Oliver H. Lowry et al.: Protein measurement with the Folin phenol reagent. In: J. Biol. Chem. Band 193, Nr. 1, 1951, S. 265–275. PMID 14907713 PDF.
  2. 2,0 2,1 2,2 F. Lottspeich, J. W. Engels, A. Simeon (Hrsg.): Bioanalytik. 2. Auflage. Spektrum Akademischer Verlag, 2006, ISBN 3-8274-1520-9. S. 38.
  3. E. F. Hartree: Determination of protein. A modification of the Lowry method that gives a linear photometric response. In: Anal. Biochem. Band 48, 1972, S. 422–427. PMID 4115981 doi:10.1016/0003-2697(72)90094-2.
  4. Christopher Pomory: Color development time of the Lowry protein assay. In: Anal. Biochem. Band 378, Nr. 2, 2008, S. 216–217. PMID 18448065 doi:10.1016/j.ab.2008.04.015.
  5. J. R. Dulley und P. A. Grieve: A simple technique for eliminating interference by detergents in the Lowry method of protein Determination. In: Anal Biochem. Band 64, Nr. 1, 1975, S. 136–141. PMID 1137083 doi:10.1016/0003-2697(75)90415-7.
  6. P. K. Smith et al.: Measurement of protein using bicinchoninic acid. In: Anal. Biochem. Band 150, Nr. 1, 1985, S. 76–85. PMID 3843705 doi:10.1016/0003-2697(85)90442-7.
  7. Hubert Rehm: Einfach und doch so kompliziert. In: Laborjournal. Heft 7–8, 2008, S. 38.

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.