Polymerelektrolytbrennstoffzelle

Die Polymerelektrolytbrennstoffzelle (engl. Polymer Electrolyte Fuel Cell, PEFC, auch Protonenaustauschmembran-Brennstoffzelle, engl. Proton Exchange Membrane Fuel Cell, PEMFC oder Feststoffpolymer-Brennstoffzelle, engl. Solid Polymer Fuel Cell, SPFC[1]) ist eine Niedrigtemperatur-Brennstoffzelle.

Geschichte

Die PEMFC wurde zu Beginn der 1960er Jahre bei General Electric entwickelt. Willard Thomas Grubb entwickelte in Schenectady (New York) eine Ionenaustauschermembran auf der Basis von sulfoniertem Polystyrol, auf welcher Leonard Niedrach drei Jahre später Platin abscheiden konnte.[2] In der englischsprachigen Literatur wird dieser Brennstoffzellentyp zu Ehren der beiden GE-Wissenschaftler auch Grubb-Niedrach fuel cell genannt. Mitte der 1960er Jahre kam die Polymerelektrolytbrennstoffzelle im amerikanischen Raumflugprojekt Gemini das erste Mal zum Einsatz.[3]

Prinzip

Aufbau einer PEM-Brennstoffzelle

Unter Verwendung von Wasserstoff (H2) und Sauerstoff (O2) wird chemische in elektrische Energie umgewandelt. Der elektrische Wirkungsgrad beträgt je nach Arbeitspunkt etwa 60 Prozent. Als Elektrolyt dient dabei normalerweise eine feste Polymermembran, beispielsweise aus Nafion. Die Betriebstemperatur liegt im Bereich von 60 bis 120 °C, wobei für den kontinuierlichen Betrieb bevorzugt Temperaturen zwischen 60 und 85 °C gewählt werden. Die Membran ist beidseitig mit einer katalytisch aktiven Elektrode beschichtet, einer Mischung aus Kohlenstoff (Ruß) und einem Katalysator, häufig Platin oder ein Gemisch aus Platin und Ruthenium (PtRu-Elektroden), Platin und Nickel (PtNi-Elektroden), oder Platin und Cobalt (PtCo-Elektroden). H2-Moleküle dissoziieren auf der Anodenseite und werden unter Abgabe von zwei Elektronen zu je zwei Protonen oxidiert. Diese Protonen diffundieren durch die Membran. Auf der Kathodenseite wird Sauerstoff durch die Elektronen, die zuvor in einem äußeren Stromkreis elektrische Arbeit verrichten konnten, reduziert; zusammen mit den durch den Elektrolyt transportierten Protonen entsteht Wasser. Um die elektrische Arbeit nutzen zu können, werden Anode und Kathode an den elektrischen Verbraucher angeschaltet.

Reaktionsgleichungen

Gleichung
Anode $ \mathrm{2\ H_2 \to 4\ H^+ + 4\ e^-} $
Oxidation / Elektronenabgabe
Kathode $ \mathrm{O_2 + 4\ H^+ + 4\ e^- \to 2\ H_2O} $
Reduktion / Elektronenaufnahme
Gesamtreaktion $ \mathrm{2\ H_2 + O_2 \to 2\ H_2O} $
Redoxreaktion / Zellreaktion

Der innere Ladungstransport erfolgt mittels Oxonium-Ionen. Auf der Anodenseite benötigt die Reaktion Wasser, welches sie auf der Kathodenseite wieder abgibt. Um den Wasserbedarf auf der Anodenseite zu decken, ist ein aufwändiges Wassermanagement erforderlich. Realisiert wird dies unter anderem durch Rückdiffusion durch die Membran und Befeuchtung der Edukte.

Anwendungsbereiche

Als Hauptanwendungsgebiete sind mobile Anwendungen ohne Nutzung der Abwärme, etwa in Brennstoffzellenfahrzeugen, U-Booten, Raumschiffen oder Akkumulatorladegeräten für unterwegs zu sehen. Auch stationäre Kleinanlagen mit einem Abwärmeniveau um 60 bis 80 °C sind möglich. Um eine technisch relevante elektrische Spannung zu erzielen, werden mehrere Zellen (zehn bis mehrere hundert) zu einem so genannten Stack (dt.: Stapel) hintereinander geschaltet. Die Temperaturregelung des Stacks erfolgt in einem eigenen zusätzlichen Kühlkreislauf.

Es ist auch ein wärmegeführter, stationärer Einsatz, z.B. in Wohnhäusern, bei einem Nutzwärmeniveau von 80 °C möglich, wobei in etwa gleichem Verhältnis Wärme und elektrischer Strom aus Biowasserstoff oder Wasserstoff, der nach dem Kværner-Verfahren aus Erdgas erzeugt wird, produziert werden. Dies ist eine Form der Kraft-Wärme-Kopplung, bei der ein Gesamtwirkungsgrad von mehr als 90 Prozent realistisch ist.[4]

CO-Toleranz

Da die Reaktionen bei relativ niedrigen Temperaturen (60 bis 120 °C) ablaufen, stellt die Toleranz gegen Kohlenstoffmonoxid (CO) ein Problem dar. Die CO-Konzentration der Kathoden-seitig zugeführten Luft sowie das auf der Anoden-Seite zugeführte wasserstoffreiche Gasgemisch sollte bei Platin-Elektroden deutlich unter 10 ppm und bei Platin-Ruthenium-Elektroden deutlich unter 30 ppm liegen. Andernfalls werden zu viele katalytisch aktive Zentren der Membranoberfläche durch CO-Moleküle blockiert. Die Sauerstoff-Moleküle bzw. Wasserstoff-Moleküle können nicht mehr adsorbiert werden und die Reaktion bricht in kürzester Zeit zusammen. Durch das Spülen der Brennstoffzelle mit reinem Inertgas oder reinem Wasserstoff kann das CO wieder von der Membran entfernt werden. CO führt auch innerhalb der Toleranzbereiche zu einer beschleunigten, irreversiblen Alterung der Membran; allerdings kann dieser Effekt durch eine Beimischung geringer Luftmengen (<= 1 Vol.%) aufgehoben werden. In diesem Fall sind Betriebszeiten von mehr als 15.000 h nachweisbar.[5]

Ziel der aktuellen Forschung ist daher, auch die CO-Toleranz der Membranen zu erhöhen. Ein anderer Lösungsansatz ist die Entwicklung von Hochtemperatur-PEMFCs, die bei bis zu 200 °C arbeiten. Bedingt durch die deutlich höhere Temperatur beträgt die CO-Toleranz bis zu 1 %. Problematisch ist derzeit noch ein geeignetes Ionomer für diesen Temperaturbereich zu finden. Bei Nafion steigt der elektrische Widerstand zu stark an und es verliert seine Eigenschaft Protonen leiten zu können. Einsetzbar sind beispielsweise Polyimide wie Polybenzimidazol (PBI), das Phosphorsäure als Elektrolyt bindet. Bei einem zu hohem Wassergehalt im Brenngas kann der Phosphorsäureaustrag aus der Membran problematisch werden.

Schwefelgehalt

Schwefel und Schwefelverbindungen (hier insbesondere Schwefelwasserstoff) sind starke Katalysatorgifte. Verursacht wird dies durch eine starke Chemisorption auf der katalytisch aktiven Membranoberfläche. Es erfolgt eine nicht reversible Zerstörung. Die Konzentration dieser Verbindungen im Gasstrom muss im unteren zweistelligen ppb-Bereich liegen, um eine solche Schädigung zu vermeiden.

Vor- und Nachteile gegenüber anderen Brennstoffzellen

Vorteile einer Niedertemperatur-PEM (Nafion-Basis) sind:

  • Fester Elektrolyt, das heißt es können keine aggressiven Flüssigkeiten auslaufen.
  • Die Zelle weist eine hohe Stromdichte auf und
  • hat ein gutes dynamisches Verhalten.
  • Auf der Kathodenseite kann Luft verwendet werden. Es ist kein Reingas (Sauerstoff) erforderlich.
  • Der Elektrolyt ist CO2-beständig

Nachteile sind:

  • Der Zelltyp ist sehr empfindlich gegen Verschmutzungen durch CO, NH3 und Schwefelverbindungen im Brenngas.
  • Das Wassermanagement ist sehr aufwändig.
  • Der Anlagenwirkungsgrad ist eher niedrig.

Einzelnachweise

  1. Wissenschaft-Online-Lexika: Eintrag zu Polymerelektrolytmembran-Brennstoffzelle im Lexikon der Physik, abgerufen am 5. Januar 2009
  2. Grubb, Willard Thomas. Bei: encyclopedia of earth, abgerufen am 7. August 2012
  3. History. Bei: FuelCellToday, abgerufen am 7. August 2012
  4. Karl-Heinz Tetzlaff: Wasserstoff für alle. BoD-Verlag, Norderstedt 2008, ISBN 978-3837061161.
  5. J. Scholta, J. Pawlik, N. Chmielewski, L. Jörissen: Longevity test results for reformate polymer electrolyte membrane fuel cell stacks, Journal of Power Sources 196 (2011) 5264–5271.

Weblinks

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.04.2021
Teilchenphysik
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte.
01.04.2021
Planeten - Elektrodynamik - Strömungsmechanik
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
30.03.2021
Kometen_und_Asteroiden
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
25.04.2021
Raumfahrt - Astrophysik - Teilchenphysik
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen.
25.03.2021
Quantenoptik
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
24.03.2021
Schwarze_Löcher - Elektrodynamik
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Astrophysik
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
23.03.2021
Supernovae - Teilchenphysik
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
23.03.2021
Teilchenphysik
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
19.03.2021
Festkörperphysik - Teilchenphysik
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.