Platonische Kohlenwasserstoffe

Erweiterte Suche

Als platonische Kohlenwasserstoffe bezeichnet man jene gesättigten Kohlenwasserstoffe, deren Kohlenstoffgerüste die geometrischen Strukturen platonischer Körper besitzen. Hierbei handelt es sich um die Verbindungen Tetrahedran (Tetraeder), Cuban (Würfel), Octahedran (Oktaeder), Dodecahedran (Dodekaeder) und Icosahedran (Ikosaeder).



Die Platonischen Körper anhand von Würfeln, wie sie bei Rollenspielen eingesetzt werden.

Aus orbitalsymmetrischen Gründen besitzen Octahedran und Icosahedran jedoch nur theoretischen Charakter und sind potentiell nicht als reale Moleküle darstellbar. Im Falle des Octahedrans müssten die vier Bindungen der Gerüstkohlenstoffatome in Richtung der Eckpunkte der quadratischen Ebene des Okateders zeigen, was eine solch starke Abweichung vom Tetraederwinkel der sp3-Hybridorbitale der Kohlenstoffatome bedeuten würde, dass keine Bindungsbildung möglich ist. Im Icosahedran müssten zur Ausbildung der Struktur zusätzlich die vierbindigen Kohlenstoffatome eine fünfte Bindung ausbilden.

Tetrahedran konnte bisher auf Grund seiner hohen Ringspannung noch nicht synthetisiert werden, jedoch konnte dessen Tetrakis(tert-Butyl)-Derivat 1978 hergestellt werden.[1] Die ausladenden tert-Butylreste stabilisieren hierbei die gespannte Struktur des Tetrahedrangerüsts. Die Spannungsenergien der drei bekannten Verbindungen nehmen vom Tetrahedran über das Cuban zum Dodekahedran hin ab.

Zur Synthese von Cuban[2][3] und Dodecahedran[4][5][6][7] sind einige Routen bekannt. Cuban wurde erstmals 1964 und Dodekahedran erstmals 1982 synthesisiert.

Einzelnachweise

  1. G. Maier, S. Pfriem, U. Schäfer, R. Matusch: Tetra-tert-butyltetrahedrane, in: Angew. Chem. Int. Ed. 1978, 17, 520–521; doi:10.1002/anie.197805201.
  2. P. E. Eaton, T. W. Cole: Cubane, in: J. Am. Chem. Soc. 1964, 86, 3157–3158; doi:10.1021/ja01069a041.
  3. P. E. Eaton, T. W. Cole: The Cubane System, in: J. Am. Chem. Soc. 1964, 86, 962–964; doi:10.1021/ja01059a072.
  4. L. A. Paquette, M. J. Wyvratt: Domino Diels-Alder reactions. I. Applications to the rapid construction of polyfused cyclopentanoid systems, in: J. Am. Chem. Soc. 1974, 96, 4671–4673; doi:10.1021/ja00821a052.
  5. L. A. Paquette, M. J. Wyvratt, O. Schallner, J. L. Muthard, W. J. Begley, R. M. Blankenship, D. Balogh: Topologically spherical molecules. Synthesis of a pair of C2-symmetric hexaquinane dilactones and insights into their chemical reactivity. An efficient π-mediated 1,6-dicarbonyl reduction, in: J. Org. Chem. 1979; 44, 3616–3630; doi: 10.1021/jo01335a003.
  6. W.-D. Fessner, B. A. R. C. Murty, H. Prinzbach: The Pagodane Route to Dodecahedranes - Thermal, Reductive, and Oxidative Transformations of Pagodanes, in: Angew. Chem. Int. Ed. 1987, 26, 451–452; doi:10.1002/anie.198704511.
  7. W.-D. Fessner, B. A. R. C. Murty, J. Wörth, D. Hunkler, H. Fritz, H. Prinzbach, W. D. Roth, P. von Ragué Schleyer, A. B. McEwen, W. F. Maier: Dodecahedranes from [1.1.1.1]Pagodanes, in: Angew. Chem. Int Ed. 1987, 26, 452–454 doi:10.1002/anie.198704521.

Literatur

Diese Artikel könnten dir auch gefallen

Die letzten News aus den Naturwissenschaften

01.09.2021
Quantenoptik | Teilchenphysik
Lichtinduzierte Formänderung von MXenen
Licht im Femtosekundenbereich erzeugt schaltbare Nanowellen in MXenen und bewegt deren Atome mit Rekordgeschwindigkeit.
30.08.2021
Astrophysik | Optik
Neue mathematische Formeln für ein altes Problem der Astronomie
Dem Berner Astrophysiker Kevin Heng ist ein seltenes Kunststück gelungen: Auf Papier hat er für ein altes mathematisches Problem neue Formeln entwickelt, die nötig sind, um Lichtreflektionen von Planeten und Monden berechnen zu können.
31.08.2021
Quantenoptik | Thermodynamik
Ein Quantenmikroskop „made in Jülich“
Sie bilden Materialien mit atomarer Präzision ab und sind vielseitig einsetzbar: Forschende nutzen Rastertunnelmikroskope seit vielen Jahren, um die Welt des Nanokosmos zu erkunden.
30.08.2021
Quantenphysik | Thermodynamik
Extrem lang und unglaublich kalt
Bei der Erforschung der Welleneigenschaften von Atomen entsteht am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen für wenige Sekunden einer der „kältesten Orte des Universums“.
25.08.2021
Quantenoptik
Laserstrahlen in Vakuum sichtbar gemacht
Einen Lichtstrahl kann man nur dann sehen, wenn er auf Materieteilchen trifft und von ihnen gestreut oder reflektiert wird, im Vakuum ist er dagegen unsichtbar.
18.08.2021
Quantenphysik
Suprasolid in eine neue Dimension
Quantenmaterie kann gleichzeitig fest und flüssig, also suprasolid sein: Forscher haben diese faszinierende Eigenschaft nun erstmals entlang zweier Dimensionen eines ultrakalten Quantengases erzeugt.
18.08.2021
Teilchenphysik
Verwandlung im Teilchenzoo
Eine internationale Studie hat in Beschleuniger-Daten Hinweise auf einen lang gesuchten Effekt gefunden: Die „Dreiecks-Singularität“ beschreibt, wie Teilchen durch den Austausch von Quarks ihre Identität ändern und dabei ein neues Teilchen vortäuschen können.
18.08.2021
Plasmaphysik
Ein Meilenstein der Fusionsforschung
Am Lawrence Livermore National Laboratory (LLNL) in Kalifornien ist in diesen Tagen ein Durchbruch in der Fusionsforschung geglückt.
16.08.2021
Festkörperphysik | Quantenoptik
Ultraschnelle Dynamik in Materie sichtbar gemacht
Ein Forschungsteam hat eine kompakte Elektronen-„Kamera“ entwickelt, mit der sich die schnelle innere Dynamik von Materie verfolgen lässt.
16.08.2021
Elektrodynamik | Teilchenphysik
Wie sich Ionen ihre Elektronen zurückholen
Was passiert, wenn Ionen durch feste Materialien geschossen werden?