Phytohormon

Erweiterte Suche

(Weitergeleitet von Phytohormone)

Phytohormone (griechische Einzahl φυτοορμόνη, fitoormóni, „Pflanzenhormon“) sind biochemisch wirkende pflanzeneigene (endogene) organische Verbindungen, die als Botenstoffe (sog. Signalmoleküle) Wachstum und Entwicklung der Pflanzen steuern und koordinieren. Da sie nicht alle Kriterien der eigentlichen Hormone erfüllen, können sie auch als Wachstumsregulatoren bezeichnet werden.[1] Neben den echten Phytohormonen gibt es zahlreiche andere sekundäre Pflanzeninhaltsstoffe, die ebenfalls wachstumsregulatorische Wirkung zeigen, zum Beispiel einige phenolische Verbindungen und Steroide. Diese gehören jedoch definitionsgemäß nicht zu den Pflanzenhormonen.

Vorkommen und Nachweis

Phytohormone kommen in allen höheren Pflanzen vor. Pflanzenhormone werden nur in geringen Mengen gebildet. Der Gehalt an den einzelnen Pflanzenhormonen hängt vom jeweiligen Pflanzenorgan und dessen Entwicklungszustand ab. Häufig ist nicht die absolute Konzentration entscheidend, sondern das Mengenverhältnis der Phytohormone zueinander. Nachweis und Bestimmung von Phytohormonen erfolgen durch verschiedenartige empfindliche Biotestverfahren, durch physikalisch-chemische Methoden und immunologische Analysenverfahren. Bedeutende Gehalte an Phytohormonen finden sich nach bisherigem Kenntnisstand z. B. bei Hopfen, Rotklee, Sojabohnen, Kichererbsen und Yamswurzel.

Ethylen, ein gasförmiges Phytohormon, das zum Reifen von Früchten beiträgt.[2]

Wirkungsweise

Die Pflanzenhormone werden in der Pflanze vom Entstehungs- zu einem spezifischen Wirkungsort transportiert, entweder von Zelle zu Zelle (z. B. Auxine), über die Leitungsbahnen (z. B. Cytokinine), oder über den Gasraum zwischen den Zellen (Ethylen).

Sie sind damit sozusagen das Nervensystem der Pflanze, indem sie Informationen zwischen den pflanzlichen Geweben austauschen und auf äußere ökologische Einflüsse eine spezifische Reaktion bewirken. Pflanzenhormone regulieren im engen wechselseitigen Zusammenspiel die pflanzlichen Wachstums- und Entwicklungsprozesse und können diese auslösen, hemmen oder fördern. Sie steuern und koordinieren auf diese Weise das Wachstum von Wurzel, Spross und Blatt, die Entwicklung von Samen und Frucht, die Seneszenz und Abszission, die Apikaldominanz, Ruhepausen von Pflanzen, den Gravitropismus und Phototropismus und viele andere Prozesse.

Entstehungsorte und der auf chemische Wechselwirkung beruhende Mechanismus sind noch wenig erforscht. Angriffsort der Phytohormone sind hormonspezifische Rezeptorproteine. Regulierung der Produktion: Die Pflanzenhormone werden entweder

  • durch verschiedene enzymatisch gesteuerte Abbaureaktionen irreversibel inaktiviert,

oder

  • durch Konjugatbildung mit Monosacchariden oder Aminosäuren in biologisch inaktive Speicherformen überführt. Diese Konjugate haben als reversible (wieder aktivierbare) Deaktivierungsprodukte eine wichtige Funktion im Stoffwechsel der Pflanze.

Während Phytohormone in Gefäßpflanzen ein breites Wirkungsspektrum haben (die sogenannte pleiotrope Wirkung), sind insbesondere für Auxine, Cytokinine und Abscisinsäure sehr spezifische Effekte auf die Differenzierung des Protonemas der Laubmoose beschrieben.[3] Bildungsort und Wirkungsort sind oft nicht eindeutig voneinander getrennt.

Einteilung

Chemisch sind Phytohormone keine einheitliche Stoffklasse. Sie werden unterteilt in fünf Gruppen:

  • die vorwiegend wachstumsfördernden Auxine, Cytokinine und Gibberelline,
  • sowie die hemmenden Phytohormone Abscisinsäure und Ethylen.

Zudem spielen Brassinosteroide, Jasmonate, Salizylate und Systemin, als einziges Peptidhormon, eine Rolle. Polyamine zählen nicht zu den Phytohormonen, da sie nicht ausschließlich Signalfunktion haben, in der Zelle immer vorhanden sind, als direkte Reaktionspartner agieren (gehen verändert aus der Reaktion hervor, irreversibel) und in hohen Konzentrationen (mM) wirksam sind.

Anwendung

Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen (beispielsweise Einzelnachweisen) ausgestattet. Die fraglichen Angaben werden daher möglicherweise demnächst entfernt. Bitte hilf der Wikipedia, indem du die Angaben recherchierst und gute Belege einfügst. Näheres ist eventuell auf der Diskussionsseite oder in der Versionsgeschichte angegeben. Bitte entferne zuletzt diese Warnmarkierung.
  • Pflanzenhormone und wirkungsverwandte Wachstumsregulatoren finden in der Land- und Forstwirtschaft sowie im Gartenbau eine breite Anwendung; siehe Gibberellinsäure.
  • Auch in der Medizin werden Pflanzenhormone eingesetzt (v.a. bei Menstruationsbeschwerden, im Klimakterium).
  • Durch Begasung mit Ethylen beschleunigt man das Reifen unreifer Früchte wie Bananen, Orangen und Zitronen in geschlossenen Lagerhallen. Ebenfalls dient es zur Induktion der Blütenbildung in geschlossenen Gewächshäusern. Zur Beschleunigung des Reifeprozesses von Früchten reichen bereits nanomolekulare Ethylen-Konzentrationen. Ebenso kann man durch kontinuierliches Entfernen des Ethylens aus Lagerhallen für Früchte deren Frische erhalten.[4]

Siehe auch

Quellenangaben

  1. v. Sengbusch, Seite der Uni-Hamburg
  2. Joachim Buddrus: Grundlagen der Organischen Chemie, 4. Auflage, de Gruyter Verlag, Berlin, 2011, S. 151−153, ISBN 978-3-11-024894-4.
  3. Eva L. Decker, Wolfgang Frank, Eric Sarnighausen, Ralf Reski (2006): Moss systems biology en route: Phytohormones in Physcomitrella development. Plant Biology 8, 397–406, doi:10.1055/s-2006-923952.
  4. Otto-Albrecht Neumüller (Herausgeber): Römpps Chemie Lexikon, Frank’sche Verlagshandlung, Stuttgart, 1983, 8. Auflage, S. 1203−1205, ISBN 3-440-04513-7.

Literatur

  • Heide Theiß, Bruno Hügel: Experimente zur Entwicklungsbiologie der Pflanzen - Phytohormone; Quelle & Meyer, Wiesbaden 1995, ISBN 3-494-01242-3

Weblinks

Die cosmos-indirekt.de:News der letzten Tage

29.05.2023
Elektrodynamik | Festkörperphysik | Quantenoptik
Informationen schneller fließen lassen – mit Licht statt Strom
Entweder 1 oder 0: Entweder es fließt Strom oder eben nicht, in der Elektronik wird bisher alles über das Binärsystem gesteuert.
25.05.2023
Kometen und Asteroiden | Biophysik
Meteoritisches Eisen: Starthilfe bei der Entstehung des Lebens auf der Erde?
Forscher haben ein neues Szenario für die Entstehung der ersten Bausteine des Lebens auf der Erde vor rund 4 Milliarden Jahren vorgeschlagen.
24.05.2023
Festkörperphysik | Astrophysik
Das Verhalten von Sternmaterie unter extremem Druck
Einem internationalen Team von Forscher*innen ist es in Laborexperimenten gelungen, Materie unter solch extremen Bedingungen zu untersuchen, wie sie sonst nur im Inneren von Sternen oder Riesenplaneten vorkommt.
23.05.2023
Quantenphysik | Quantencomputer
Turbo für das Quanteninternet
Vor einem Vierteljahrhundert machten Innsbrucker Physiker den ersten Vorschlag, wie Quanteninformation mit Hilfe von Quantenrepeatern über große Distanzen übertragen werden kann, und legten damit den Grundstein für den Aufbau eines weltweiten Quanteninformationsnetzes.
18.05.2023
Teilchenphysik | Quantencomputer
Quantenschaltkreise mit Licht verbinden
Die Anzahl von Qubits in supraleitenden Quantencomputern ist in den letzten Jahren rasch gestiegen, ein weiteres Wachstum ist aber durch die notwendige extrem kalte Betriebstemperatur begrenzt.
17.05.2023
Relativitätstheorie | Quantenphysik
Gekrümmte Raumzeit im Quanten-Simulator
Mit neuen Techniken kann man Fragen beantworten, die bisher experimentell nicht zugänglich waren – darunter auch Fragen nach dem Zusammenhang von Quanten und Relativitätstheorie.
16.05.2023
Sonnensysteme | Planeten | Geophysik
Die Kruste des Mars ist richtig dick
Dank eines starken Bebens auf dem Mars konnten Forschende der ETH Zürich die globale Dicke der Kruste des Planeten bestimmen.
11.05.2023
Sterne | Teleskope
Einblicke in riesige, verborgene Kinderstuben von Sternen
Mit dem Visible and Infrared Survey Telescope for Astronomy (VISTA) der ESO haben Astronomen einen riesigen Infrarot-Atlas von fünf nahe gelegenen Sternentstehungsgebieten geschaffen.
10.05.2023
Festkörperphysik | Quantenphysik | Quantencomputer
Verschränkte Quantenschaltkreise
ETH-Forschenden gelang der Nachweis, dass weit entfernte, quantenmechanische Objekte viel stärker miteinander korreliert sein können als dies bei klassischen Systemen möglich ist.
10.05.2023
Exoplaneten | Geophysik
Widerspenstiger Exoplanet lüftet seinen Schleier (ein bisschen)
Einem internationalen Forschungsteam, an dem das Max-Planck-Institut für Astronomie beteiligt ist, ist es nach fast 15 Jahren vergeblicher Anstrengungen gelungen, einige Eigenschaften der Atmosphäre des Exoplaneten GJ 1214 b zu ermitteln.
10.05.2023
Atomphysik
Forschende beschreiben flüssigen Quasikristall mit zwölf Ecken
Einen ungewöhnlichen Quasikristall hat ein Team der Martin-Luther-Universität Halle-Wittenberg (MLU), der Universität Sheffield und der Jiaotong-Universität Xi'an gefunden.
08.05.2023
Quantenphysik
Künstliche Intelligenz lernt Quantenteilchen zu kontrollieren
In der Quantenforschung braucht man maßgeschneiderte elektromagnetische Felder, um Teilchen präzise zu kontrollieren - An der TU Wien zeigte man: maschinelles Lernen lässt sich dafür hervorragend nutzen.
06.05.2023
Teilchenphysik | Kernphysik
Elektronen-Rekollision in Echtzeit auf einen Schlag verfolgt
Eine neue Methode erlaubt, die Bewegung eines Elektrons in einem starken Infrarot-Laserfeld in Echtzeit zu verfolgen, und wurde am MPI-PKS in Kooperation zur Bestätigung theoretischer Quantendynamik angewandt.
05.05.2023
Satelliten und Sonden | Quantenoptik
GALACTIC: Alexandrit-Laserkristalle aus Europa für Anwendungen im Weltraum
Alexandrit-Laserkristalle eignen sich gut für den Einsatz in Satelliten zur Erdbeobachtung.
04.05.2023
Festkörperphysik | Quantenphysik
Nanophysik: Wo die Löcher im Flickenteppich herkommen
Patchwork mit Anwendungspotenzial: Setzt man extrem dünne Halbleiternanoschichten aus Flächen zusammen, die aus unterschiedlichen Materialien bestehen, so finden sich darin Quasiteilchen mit vielversprechenden Eigenschaften für eine technische Nutzung.
03.05.2023
Sterne | Teleskope
Astronomen finden weit entfernte Gaswolken mit Resten der ersten Sterne
Durch den Einsatz des Very Large Telescope (VLT) der ESO haben Forscher zum ersten Mal die Fingerabdrücke gefunden, die die Explosion der ersten Sterne im Universum hinterlassen hat.